EPA: Requirements for AQ Monitoring and Regulation

John G. Lyon and James Szykman Environmental Sciences Division (ESD) U.S. EPA, Office of Research and Development, NERL

Air pollution has been recognized for a long time

FUMIFUGIUM:

Or the Inconvenience of the Aer and Smoake of London Dissipated by JOHN EVELYN

First Published in 1661 and Reprinted by the NATIONAL SOCIETY FOR CLEAN AIR 1961

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

1661 article...

Health effects...

Look at conditions in New York Thanksgiving of 1966

National Mandates related to Air Quality

Regulatory NAAQS (Assessment/Monitoring):

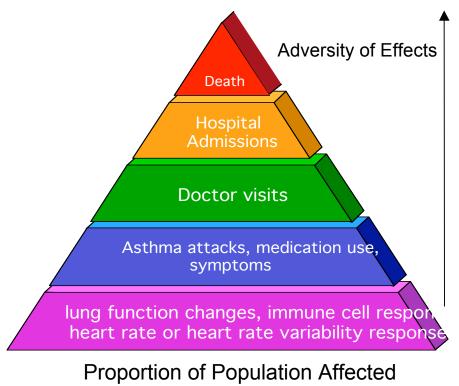
Clean Air Act - EPA Administrator required to periodically review and revise National Ambient Air Quality Standards in accordance with latest state of the science

Air Quality Forecast:

H.R. 4 Energy Policy Act of 2002 (Senate Amendment) **EPA-NOAA Agreements:** EPA Administrator and Dept. of Commerce Deputy Secretary signed MOU/MOA for AQ forecasting May 6, 2003

Public Health Tracking:

Nationwide Health Tracking Bills originally introduced in S.2054 and H.R.4061 in 2002, re-introduced in 2005.


EPA-CDC Agreement: EPA Administrator and Dept. of HHS Secretary signed MOU related to EPHTN September 30, 2002

RESEARCH & DEVELOPMENT

Science Driver for Ozone and Aerosols are the Health Based Standards

- Annual PM2.5 (1997)
 - Form: Annual Arithmetic Mean
 - Level: 15.0 ug/m3
- 24-hr PM2.5 (1997)
 - Form: 98th percentile
 - Level= 65 ug/m3
- 8-hr O3 (1997)
 - Form: 4th daily max
 - Level =0.08 ppm
- 24-hr PM2.5 (proposed 2005)
 - Form: 98th percentile
 - Level= 35 ug/m3

RESEARCH & DEVELOPMENT

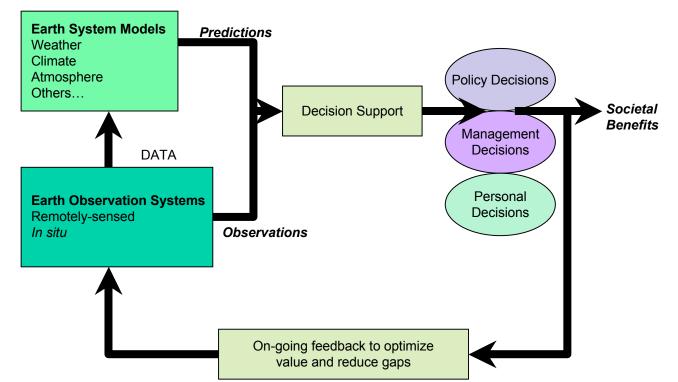
U.S. Contribution to GEOSS

Vision Statement

Enable a healthy public, economy, and planet through an integrated, comprehensive, and sustained Earth observation system.

17 federal agencies/groups

USGEO.gov



RESEARCH & DEVELOPMENT

Linking Earth Observations to Societal Benefits

The Challenge:

- To combine existing and future data at various temporal and spatial scales in a meaningful way;
- Transform data into new knowledge;
- Map new knowledge into agency decision support systems;
- Thereby, improving the science foundation of environmental decisions.

RESEARCH & DEVELOPMENT

Application of Trace Gas and Aerosol Satellite Measurements

- Assessment/Monitoring Enhance
 Traditional Focus on Regulatory Policy
 - Identify, characterize, and track pollution
 - Model forecasts evaluation/verification.
 - Data will help to develop pollution reduction strategies and characterize emission sources.
 - Data will help assess existing pollution control strategies Criteria Pollutant NAAQS.

RESEARCH & DEVELOPMENT

Application of Trace Gas and Aerosol Satellite Measurements

- Air Quality Forecasting EPA/NOAA Partnership
 - Assimilation of data to improve air quality forecast
 - Model forecasts evaluation/verification
- Connecting to other Science Areas
 - Global and Region Climate-Air Quality Connections
 - Public Health Tracking Human Exposure

"Applications require balanced approach of measurements and models"

RESEARCH & DEVELOPMENT

Tropospheric Satellite Data to Date Are from Low-Earth Orbit (LEO)

- Current EOS Research Satellites (MODIS, MISR, MOPITT, AIRS) are LEO and have demonstrated the measurements.
- Newer Generation Research Satellites (SCIAMACHY, TES, OMI, CALIPSO) are also LEO and Will Provide Asynoptic Global Coverage.
- The measurement capability has been demonstrated from LEO and these provide extremely valuable data for AQ research.

RESEARCH & DEVELOPMENT

EPA Expert Community Panel Workshop: 9-10 March 2004

- •14 invited experts from Public-Private-Academic sectors The charge:
 - Provide EPA with expert recommendations and guidance concerning EPA participation in a Global Earth Observing System of Systems (GEOSS).
 - Make recommendations focused on:
 - domestic and international needs and challenges, and
 - chemical and meteorological monitoring and modeling,
 - emissions inventorying, urban air quality,
 - communications,
 - information archiving,
 - training and outreach
 - Covered the gamut of resolution and other parameters.

Henry and Dabberdt report available

RESEARCH & DEVELOPMENT

Panel Members

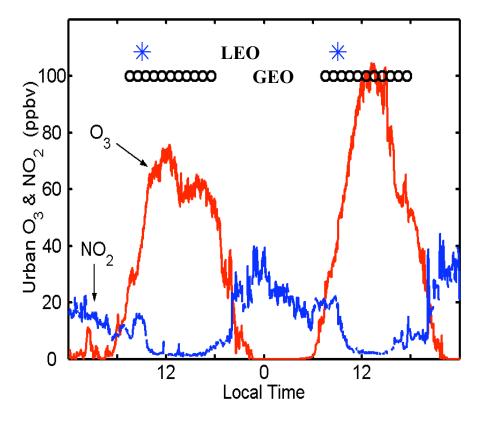
- Gregory Carmichael -- Univ. Iowa
- Mary Anne Carroll -- Univ. Michigan
- Jason Ching -- NOAA (assign. to EPA)
- Walter Dabberdt -- Vaisala (Co-Convener)
- Jack Fishman -- NASA LaRC
- Alex Guenther -- NCAR
- Jeremy Hales -- ENVAIR
- Robert Imhoff -- BAMS
- Sharon LeDuc -- NOAA NCDC

• John McHenry -- BAMS (Co-Convener)

- Richard McNider -- Univ. Alabama -Huntsville
- Nelson Seaman -- Penn State Univ. (assign. To NOAA/NWS)
- James Szykman USEPA ORD (assign. to NASA LaRC)

Anne Thompson – Penn. State Univ.
Gary Foley, S.T. Rao, Ellen Cooter and John Lyon – EPA (Sponsors)

RESEARCH & DEVELOPMENT


"Ideal" Observation of Chemical Parameters Needed for Air Quality

- Key Chemical species directly related to NAAQS
 - Ozone, NO2, HCHO, CO, SO2, NH3
 - Other trace gases of opportunity within spectrum
 - PM species: AOD at a minimum
 - Chemical composition and size distribution of aerosols (PM10 PM2.5)
- Resolution:
 - Vertical multiple layers in troposphere with resolution of PBL
 - Horizontal Spatial resolution needs to be in with high resolution regional AQ models (i.e., 4 km x 4 km or finer)
 - Temporal Hourly to capture rapid changes of O3, aerosols, & precursors during the day, and night for IR measurements
- Information used for :
 - Data assimilation during air quality model simulation
 - Operational and diagnostic model evaluation
 - Emissions inventory verification
 - Evaluation of Policy issues

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

GEO provides the appropriate *time resolution for air quality*

O₃, aerosols, & precursors change rapidly during the day.

Urban area AQ

Stars indicate typical times for Low Earth Orbit (LEO) measurements **Circles** indicate individual GEO hourly measurements

RESEARCH & DEVELOPMENT

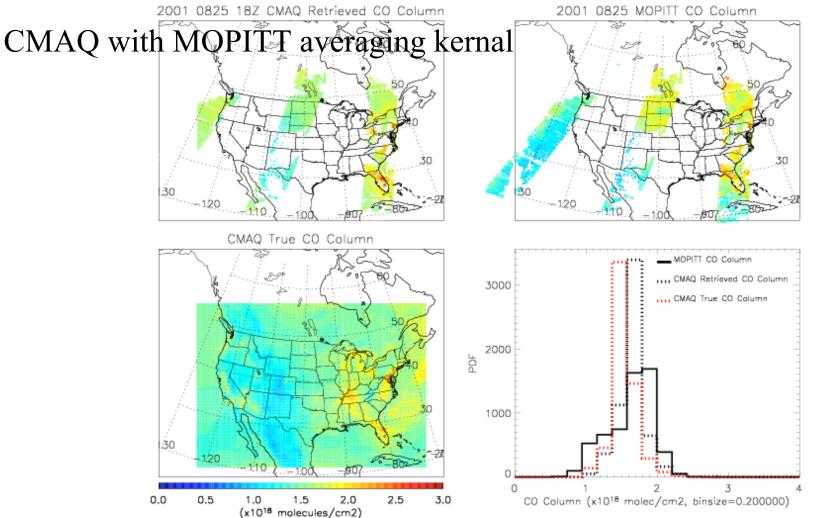
U.S. EPA Participating in GOES-R Program as a User

- GOES-R will provide improved operational AQ related products.
 - MODIS like aerosol and fire products.
 - Traces gases CO, CH4 and O3, primarily for corrections on physical parameter retrievals.
- GOES-R will help with temporal resolution for air quality aerosol needs, but trace gas products will provide limited information and are not optimal for air quality.

GOES-R Sensor	Bands	Product
ABI	0.47µm, 0.86µm, 2.1µm	Aerosol optical depth, type (dust vs non dust), and particle size (effective radius) Fraction of fine mode vs coarse mode
ABI	9.6µm	Total column ozone
ABI	3.9µm, 11µm	Fire location, size and intensity Carbon consumption Aerosol and trace gas emissions
ABI	11µm, 12µm	Dust detection
HES	800 – 1000 cm ⁻¹	Dust loading and height Volcanic ash detection and amount Volcanic ash height Smoke plume height
HES	1650 – 2250 cm ⁻¹	Carbon monoxide Methane
HES	950 – 1050 cm ⁻¹	Ozone profile
HES	600 – 800 cm ⁻¹	Ash cloud height Smoke plume height
HES	1100 – 1200 cm ⁻¹	Sulfur dioxide

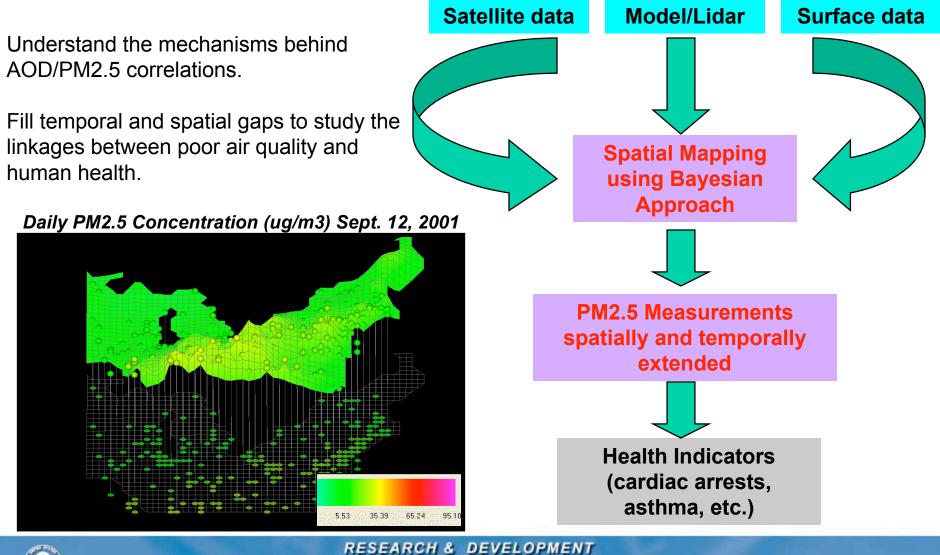
RESEARCH & DEVELOPMENT

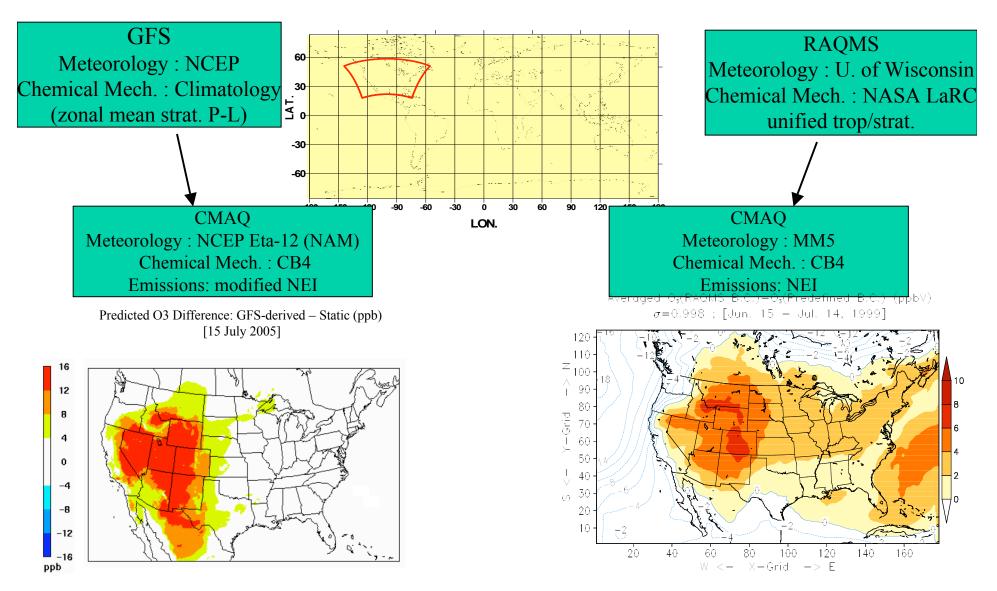
Considerations for Air Quality Derived Tropospheric Satellite Data


Ideal air quality observations match temporal and spatial scales of assessment/forecast models and complement operational surface monitoring network

- LEO, with global coverage and daily sampling, is good for climate and global monitoring.
- GEO, with regional coverage and hourly sampling, is appropriate for regional scale modeling and assessments.
 - Primary region of interest is US, and areas of transport to US (Mexico, Canada).
 - Pollution is episodic, can be regional or local, but most importantly has large diurnal variability

RESEARCH & DEVELOPMENT


Model Evaluation CMAQ (retrieved) CO vs. MOPITT CO


RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Spatial Prediction Using Combined Sources of Data

۲

Impact of Lateral Ozone Boundary Conditions on Predicted Ozone, linking global models to regional

Acknowledgements

David Holland and James Szykman USEPA/ORD/NERL Environmental Sciences Division

B. Roy – USEPA/ORD/NERL Atmospheric Modeling Division

Alice Gilliland NOAA/ARL and USEPA/ORD/NERL Atmospheric Sciences Modeling Division

Shobha Kondragunta NOAA/NESDIS Center for Satellite Applications and Research

Allen Chu - UMBC-JCET/GSFC

Brad Pierce, J. Al-Saadi, Chieko Kittaka - NASA Langley Research Center

Daewon Byun and C.K. Song – IMAQS University of Houston

RESEARCH & DEVELOPMENT

Notice

 Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use.

RESEARCH & DEVELOPMENT