Study of Tropospheric Trace Gases and Aerosols by Backscatter Ultraviolet Remote Sensing

Pawan K. Bhartia NASA Goddard Space Flight Center Greenbelt, Maryland, USA

40 Years of BUV Observations from LEO

Variation with ht of Sensitivity to Absorbers CLEAR SKY

Features of the BUV Technique

Strengths

• Measurement of O₃, SO₂,NO₂, HCHO, CHOCHO(?), plus smoke and dust absorption.

• Clouds & snow/ice enhance the sensitivity (to the column above), *rather than reduce it, as in TIR*.

•Thin clouds, aerosols, and surface albedo have relatively small effect on sensitivity (*compared to NIR*)

Weaknesses

• Limited or no vertical information

•Peak sensitivity (to m.r.) near 5 km

• Reduced, strongly ht dependent, sensitivity in PBL, greatly affected by clouds- common to all passive remote sensing techniques.

Tropospheric Ozone

Techniques

- Multi-instrument (nadir + limb)
 - Advantage: good separation of trop & strat
 - Disadvantage: only one piece of information
- Cloud Slicing
 - Advantage: good separation of upper and lower trop
 - Disadvantage: poor sampling, particularly from LEO
- Multi-spectral (UV, UV+IR, UV+VIS)
 - Advantage: some profile information
 - **Disadvantage**: broad weighting fn near tropopause

OMI + MLS (Weighted-Mean MR in ppmv)

O₃ Above Deep Convective Clouds in Pacific

From: Observation of near-zero O_3 concentrations over the convective Pacific: Effects on air chemistry, Kley et al., Science, Oct 1996.

Trop O₃ Column from Cloud Slicing

Tropospheric Aerosols

Why Ultraviolet?

- One can reliably track transport of UV-absorbing aerosols (smoke, desert dust, volcanic ash) in the free troposphere- even over clouds & snow/ice
- If aerosol height information is available (from LIDAR or models) aerosol absorption OT can be derived with accuracy approaching that of AERONET.

OMI Aerosol Index

July 2005 Saharan Dust Storm as seen by OMI

Aerosol Detection in Presence of Clouds: A Unique Capability of the BUV technique

Aerosol Index (color scale) Reflectivity (gray scale)

MODIS-Terra, 10 January 2005

OMI AI w/MODIS-Terra, 10 January 2005

Dust Storm over Libya (Mar 1, 2005)

Dust Over Africa (March 1, 2005)

Smoke over Alaska (Aug 21, 2004)

BUV Experience Summary

- 35+ years of experience.
- 50+ years of measurement from LEO is assured.
- Can measure all criteria pollutants except CO.
 - The only proven technique for measuring aerosol absorption from space.
 - The only passive remote sensing technique that can track smoke and dust plumes above clouds & snow/ice.
- Performs best for trace gases and aerosols in the free troposphere.
- UV Absorbers in the PBL can be seen, but only if there is nothing above (incl. clouds). Retrieval is very sensitive to vertical distribution of the absorber.

