

Carbon Monoxide Measurements from Space Past, Present and Future

James R. Drummond Department of Physics, University of Toronto

- Basic Sounding Issues
- Current Measurements
- Prospect for future measurements

Basic Sounding Issues

- Spectral range
 - Absorption bands
 - Spectral resolution
 - Vertical resolution
- Viewing Geometry
 - Limb
 - Nadir
- Orbital considerations
 - Coverage
- Miscellaneous
 - Clouds and bias

Spectral Bands

- CO only has two usable spectral bands in the infrared plus microwave rotation spectrum
- Band at 2140 cm-1 (4.7um) has a strong emission component in nadir signals
- Band at 4200 cm-1 (2.4.um) is much weaker (overtone band) and has significantly less emission signal
- All bands have other components as contaminating spectra
- Choice of spectral band significantly influences the type of information retrieved from the measurement

Spectral Resolution

- Spectral resolution affects how much information can be retrieved from a given measurement
- More spectral resolution
 - More detail (information)
 - Less signal-to-noise
- All space instruments have some compromise in spectral resolution
- Spectral resolution determines the amount of information that can be retrieved from a measurement
 - Often manifests itself in terms of vertical resolution

The Limits of Physics

	Sign	Signal-to-Noise			
Res'n	10	50	100	500	
1	0.061	0.63	0.92	1.6	
.5	0.11	0.77	0.97	1.5	
.1	0.5	1.9	2.4	3.4	
.05	1.5	2.5	3	4.5	
.025	1.9	2.8	3.3	4.7	
.0125	2	3.1	3.6	5.3	
.006	2.19	3.41	4.12	5.75	

DFS = Degrees of Freedom for Signal

21 February 2006

JRD - B

Viewing Geometry

- Nadir Viewing
 - Good horizontal resolution
 - Poor Vertical resolution
 - Less sensitive
 - Need to find gaps in clouds and aerosols
 - Can probe lower atmosphere to "surface"

- Limb/Occultation Viewing
 - Poor horizontal resolution
 - Good vertical resolution
 - Very sensitive
 - Highly sensitive to clouds and aerosols
 - Probability of measurement rapidly declines below tropopause – very low below 5km

21 February 2006

Scanning, Orbits and Coverage

- Scanning of the instrument increases coverage
 - The pixel distorts at large viewing angles
 - The radiative transfer problem becomes more complex at high viewing angles
- Raising the orbit increases coverage
 - Increases pixel size unless optics are also corrected
 - Can also increase temporal coverage through swath overlap
- Inclination of orbit dictates latitude limits
 - Scanning can increase things a bit but not to completely compensate

The Poles of Orbits

- Boulder Air Quality

Low-Earth Orbit (6-900km) •

- Repeat coverage times 1/day or less
- Planetary coverage 1/day (present) n/day (future)
- Polar coverage better than equatorial coverage
- Distance makes instrument/satellite design easier/cheaper

- **Geostationary Orbit** •
 - Repeat times 1/hour easily achievable
 - 1/3 planet coverage
 - No coverage of 2/3 planet
 - Equatorial coverage better than polar coverage
 - Distance makes instrument/satellite design more difficult/expensive

10

- All satellite instruments have bias
 - Horizontal spatial bias
 - · Horizontal spatial bias often appears as "no coverage"
 - Low Earth Orbit satellites have more polar coverage
 - Geostationary satellites don't cover the poles
 - Vertical spatial bias
 - 4.7um and limb/occultation instruments do not measure near the ground
 - Temporal bias
 - · Low earth orbiters are often "sun synchronous"
 - Measurements at each latitude are only made at one/ two local times
 - 2.4um are made in reflected sunlight
 - No night coverage and limited solar zenith angle in practice

- Other biases
 - Cloud bias
 - No measurements through clouds so measurements are biased to cloud-free regions
 - Aerosol bias
 - · Same arguments apply to aerosol/smoke
 - Land bias
 - 2.4um reflected sunlight over the ocean is very weak instruments tend to only operate over land

Total Column CO (10⁸ mol/cm²), Oct. 28 - Nov. 6, 2000

The Ideal CO-Measuring Instrument

- There isn't one!
- All CO-measuring instruments are developed within these trade spaces
- All CO-measuring instruments have strengths and weaknesses

Past Instruments

Carbon monoxide column density retrieved from IMG data : 1997.4.2.

CO column density (N/cm**2)

21 February 2006

Measurement of Air Pollution from Satellites (MAPS)

Carbon Monoxide Mixing Ratios in Middle Troposphere SRL-2 September 30 - October 11, 1994

NASA LANGLEY RESEARCH CENTER / ATMOSPHERIC SCIENCES DIVISION

10 20

200 +

Current Instruments

ir Qu

Future Instruments

What Is Needed?

- Continuous Monitoring in some form
 - CO is variable on all space and time scales
 - Pick your problem and optimise the instrument for that problem
- Geostationary
 - High time resolution
 - Limited spatial resolution
 - Good for local/regional studies
 - Hopeless for global studies (unless we get at least 3 of them)
- Low Earth Orbit
 - Lower time resolution
 - Global coverage
- 4.7um channels
 - Vertical resolution
- 2.4um
 - With 4.7µm (not alone) can provide Boundary Layer measurements
- Solar occultation/emission sounders help with the upper levels and STE

Conclusions

- It's been a very interesting couple of decade!
- CO measurements from space are now in progress and becoming accepted in the community
- There are new possible measurements to be made
- Hence this workshop.....