Atmospheric Composition Measurements from the EUMETSAT Polar System (EPS) and plans for Post-EPS

EUMETSAT

R. Munro, P. Schlüssel, D. Klaes, P. Phillips & C. Accadia

Summary

1. MetOp 2. GOME-2 on MetOp 3. IASI on MetOp 4. Plans for post-EPS

MetOp payload

\Rightarrow ESA / EUMETSAT / CNES

- GOME-2 UV/VIS scanning spectrometer
- ASCAT C-band radar scatterometer
- GRAS GPS satellite receiver (occultation)
- MHS Microwave radiometer 89/190 GHz
- IASI FTIR spectrometer (nadir)

- O3 & trace gases... wind over oceans T & H2O profiles H2O profiles T, H2O, O3, CO2...
- DCS/Argos Data collection from remote stations
- S&R Data collection from emergency transmitters

\Rightarrow NOAA / NASA

- AVHRR high-spatial resolution VIS/IR imager
- HIRS VIS/IR filter-wheel radiometer

- clouds, sea ice,... T/p profiles, O3 T/p profiles
- AMSU-A Microwave radiometer for 50 GHz O2 line
- SFM Particle radiation monitor

MetOp: Satellite and Met-Instruments

Metop - fully integrated

GOME-2 on MetOp

- ⇒ European Operational Global Ozone Monitoring on-board MetOp 1-3 satellites in 2006 to 2020
- \Rightarrow GOME-1 launched on-board ERS-2 in April 1995, still operational, provides
 - trace gas total columns (ozone, NO2, SO2, BrO, OCIO, HCHO,...)
 - ozone profiles; aerosol, cloud, polarisation information
- \Rightarrow Improvements for GOME-2
 - polarisation measurement of s- and p-polarised light in 15 bands
 - white light source
 - improved calibration approach
 - numerous small improvements
 - furthermore, adaptations to different satellite environment were needed.

GOME-2 Measurement Principle

Forward scan 1920 km duration 4.5 s integration time 187 ms

24 ground pixels size 40 * 80 km²

PMU pixel size 192 ground pixel size 40 * 10 km²

GOME-2 In-flight calibration

- \Rightarrow daily sun calibration
- \Rightarrow daily spectral calibration
- \Rightarrow daily dark signal characterisation
- \Rightarrow daily white light source characterisation
- \Rightarrow monthly calibration
 - spectral calibration
 - diffuser monitoring
 - engineering parameters
- \Rightarrow moon calibration

GOME-2 Spectral Bands

GlobalTropospheric O3 from GOME-1 - R. Siddans, RAL, private comm

Air Quality Remote Sensing from Space, 21 - 23 February 2006, NCAR, Boulder

Slid

IASI Mission and Measurement Principles

Mission	Primary mission objective → temperature and humidity profiles with improved accuracy and vertical resolution (1K and 10% @ 1 km vertical resolution, respectively)
	Further mission objectives are related to the measurement of trace gases (ozone, methane, carbon monoxide,) as well as surface and cloud properties
Technique	IASI is based on a Michelson interferometer. Spectral range 3.6 to 15.5 μm (645 to 2760 cm-1) Spectral sampling: 0.25 cm-1 giving 8461 spectral samples Spectral resolution after apodisation: 0.5 cm-1
	IASI is nadir-viewing and across track scanning. 30 fields-of view along the scan line are sampled in 2×2 matrices of circular fields of view with a diameter of 12 km

IASI Field of View

HIRS 19 channels versus IASI 8461 spectral samples

IASI Data Transmission and Processing

- \Rightarrow Satellite to ground transmission:
 - On-board storage and direct broadcast to local users
 - Down-link of global data to Svalbard receiving station after each completed orbit
 - Transmission of data to EUMETSAT Headquarters at Darmstadt
- \Rightarrow Data processing at EPS Core Ground Segment:
 - Generation of Level 1 products (decommutation, calibration, apodisation, geo-location, and mapping of imagery)
 - Generation of Level 2 products (geophysical parameters)
- \Rightarrow Distribution to users:
 - Near-real time transmission of products to users (Level 1: 2.15 h, Level 2: 3 h) via satellite broadcast (EUMETCast)
 - Distribution of sub-sampled data via GTS to WMO users
 - Storage in Unified Archival and Retrieval Facility (UMARF) for later access by users

Geophysical Parameter Retrieval

 \Rightarrow The state vector to be retrieved consists of the following parameters

- Temperature profile at a minimum of 40 levels
- Water vapour profile at a minimum of 20 levels
- Ozone columns in deep layers (0-6km, 0-12 km, 0-16 km, total column)
- land or sea surface temperature -
- surface emissivity at 12 spectral positions -
- Columnar amounts of N2O, CO, CH4, CO2 -
- Cloud amount (up to three cloud formations)
- Cloud top temperature (up to three cloud formations)
- Cloud phase
- \Rightarrow In case of clouds and elevated surface the state vector has to be modified

 \Rightarrow Additionally off-line scientific products are anticipated

Ozone Profile Retrieval from Nadir-uv & -ir Combination

Prior error = ECMWF forecast error covariance

Post-EPS Overall Planning - the follow on to MetOp beyond 202

Post-EPS Phase Planning

Air Quality Remote Sensing from Space, 21 - 23 February 2006, NCAR, Boulder

EUMETSAT

Application Experts Groups

 \Rightarrow Support of EUMETSAT user consultation towards Post-EPS

- \Rightarrow Analysing the needs of EUMETSAT users in the 2020+ timeframe
 - Starting with MTG Position Papers
 - Global numerical weather prediction
 - Regional numerical weather prediction
 - Now-casting
 - Analysing the evolution of those applications
 - Taking account of further applications:
 - Operational oceanography
 - Atmospheric chemistry and carbon cycle (protocol monitoring and air quality)
 - Land surface analysis at large scale
 - Climate monitoring

⇒ Formulation of EUMETSAT user needs: Position Papers

Atmospheric Chemistry Mission: Approach to Generating Requirements

 \Rightarrow Generated by a dedicated Application Expert Group (AEG)

- \Rightarrow Heritage
 - Integrated Global Atmospheric Chemistry Observations (IGACO) Report from the IGOS Atmospheric Chemistry Theme Partners
 - ESA commissioned CAPACITY study to define the Geophysical Data Requirements for an Operational Atmospheric Chemistry Monitoring Mission
- \Rightarrow Requirements specified for satellite observations only
- ⇒ Prioritisation per application remaining aware of observing feasibility

Atmospheric Chemistry Mission: User Data Requirements Tables

- \Rightarrow Ozone & Surface UV
 - Priority 1 (protocol/forecast): O3 stratosphere/UT profile & column
 - Priority 2 (assessment): stratospheric CIO, BrO, HNO3 -& aerosol (heterogeneous chemistry)
- \Rightarrow Composition Climate
 - Priority 1: O3 & H2O profiles; trop CH4 (emissions)
 - Priority 2: CO2 (emissions); trop CO & NO2 (chemistry);
 - stratospheric N2O/CH4 (circulation); AOD & cirrus
- \Rightarrow Pollution & Air Quality
 - Priority 1 (regulation/AQ index) 03, NO2, CO, SO2, AOD
 - Priority 2 (forecast): H2O, H2CO, aerosol type

Points on Mission Concept

- \Rightarrow Considering data regs for the three applications and drawing on the extensive assessment of observing techniques for CAPACITY, two points noted re mission concept:
- \Rightarrow Nadir-viewing uv-swir and ir spectrometers complementary in (a) nearsurface sensitivity and (b) detectable constituents
 - Requirements for near-surface observations of trace gases and aerosol addressed by this combination
- \Rightarrow Limb-viewing mm-wave and ir spectrometers complementary in (a) cirrus sensitivity and (b) detectable constituents
 - Requirements for vertical profiling addressed optimally by combination of limb- and nadir-sounding

