

Introduction

- PM2.5 (particulate matter, or aerosol particles, with diameter less than 2.5 µm) is a key component determining air quality
- Remote sensing capability of atmospheric aerosol optical depth (AOD) could lead to a quantum leap in our ability of air quality monitoring and prediction, especially for regions where surface monitoring network does not exist
- I will discuss:
 - What are the advantages and limitations of using the current satellite data for regional AQ (PM2.5) studies?
 - Can we use data assimilation to improve PM2.5 prediction?
 - What are the critical data needs?

Q1. What are the advantages and limitations of using the current satellite data for regional AQ (PM2.5) studies?

	Current satellite aerosol products		
Sat.	Instr.	Pros	Cons
Terra & Aqua	MODIS (0.47 – 2.13 μm)	 Daily near global coverage Morning and afternoon observations Size information (fine/coarse) High spatial resolution (1 – 10 km) 	 Large uncertainties or not data over bright surfaces No vertical information No speciation No data when cloudy
Terra	MISR (0.45 – 0.87 μm)	 High accuracy over land Size information Air mass differentiation Plume height information in some cases (Particle shape information) 	 Limited area coverage (global coverage every ~7 days) Hit or miss – difficult for daily AQ monitoring Almost no vertical information No speciation No data when cloudy
Aura	ΟΜΙ (0.27 – 0.50 μm)	 Daily near global coverage Detecting aerosol over bright land surface Aerosol absorption (thus information of BC or dust) Aerosol Index detecting aerosol in clouds Precursor measurements (SO₂, NO₂) 	 No vertical information No speciation ???
IceSat	GLAS (0.532 & 1.064 μm)	Vertical distributionsCloud information	 Very limited space and time coverage Uncertainties in retrieving extinction profiles
Calipso (not launched)	CALIOP (0.532 & 1.064 μm)	Vertical distributionsCloud information	 Limited space and time coverage Uncertainties in retrieving extinction profiles

MODIS AOD tracks PM2.5, providing guidance for PM2.5 forecasts

(Figures from Al-Saadi et al., BAMS 2005)

Can satellite AOD data be quantitatively used to predict surface PM2.5?

- Yes, if aerosol composition and vertical distribution do not vary much
- No, if aerosol composition and vertical distribution vary a lot Maybe so, if the AOD are supplemented with vertical data or a reliable chemistry-transport model

Engel-Cox et al. (2004) show that the correlation coefficients between the MODIS AOD and surface PM2.5 measurements vary with locations: better correlated in the eastern US than in the western US for the period of 4/1 -9/30/2002.

GOCART model shows a similar relationship between AOD and PM2.5

OC, BC,

dust, &

sea-salt

- AOD and PM2.5 is better correlated in the eastern half of the U.S. than in the western
- AOD and PM2.5 is better correlated in September than in April
- This is mainly because the change in composition and/or vertical structure

Q2. Can we use data assimilation to improve PM2.5 prediction?

What to assimilate? That is the question

- Assimilating AOD alone is not sufficient
 - What type of aerosols? Different aerosol types have different mass extinction efficiency
 Where is the aerosol located? Aerosol aloft does not affect
 - surface AQ
 - What about those gaps and bias?
- Assimilating surface PM2.5 and chemical composition may not be consistent with column AOD
- Assimilating radiance (directly measured by satellite) is very challenging
 - Particle shape
 - Surface albedo
 - Mixing state
 - Satellite viewing geometry, etc etc etc
- Multi-dimensional (3-D plus information on composition) assimilation may be the best, but currently has little data

AOD from MODIS, MISR, AERONET:

GOCART vs. AERONET & IMPROVE:

MODIS, MISR, GOCART, and MO_MI_GO, 200104

MO_MI_GO improves the agreement with AERONET measurements of column AOT...

CONUS

...but does not translate to a better agreement with IMRPOVE PM2.5

Q2.	Can we use data assimilation to improve PM2.5 prediction?
R2.	 Using aerosol assimilation of satellite data may not improve PM2.5 prediction compared with using model only, due to lack of constraints of vertical profile and composition 3-D assimilation (e.g. AOD+lidar) is likely to significantly enhance the PM2.5 estimation but may not be practical for daily forecasts Without (a) high quality model(s) the quality of assimilation cannot sustain Model development and improvement is the key to integrate the knowledge and data for forecasts, assessments, analyses, and observation designing

Q3.	What are the critical needs?
R3.	 Space sensor for global or near global coverage: Vertical profile measurement to resolve BL Composition Daily revisit (minimum) Ground-based networks for diurnal variation, detailed composition, and for satellite validation (mostly likely over North America and Europe): AERONET type + lidar Chemical composition (IMPROVE type) In-situ measurements (once in a while) in key areas These data provide critical information for model evaluation, improvement, and development

Combination of model and data can:

min

more

- Fill the gaps of observations
- Provide "inside" information of unmeasurable quantities
- Línk data from dífferent plateforms (space, ground, aircraft)
- Derive relationships between remote-sensed data (AOD, extinction etc) to surface concentrations and apply these relationships to regions where AQ measurement is none (e.g. developing countries)
- Províde AQ forecast, assessment, and management strategy