



# **CAPACITY\***

# OPERATIONAL ATMOSPHERIC CHEMISTRY MONITORING MISSIONS 2010-2020

**Michiel van Weele** 

**Atmospheric Composition Division, Climate Department** 

KNMI

**The Netherlands** 

\* Composition of the Atmosphere: Progress to Applications in the user CommunITY

Hennie Kelder, Heinrich Bovensmann, Albert Goede, Brian Kerridge, Paul Monks, John Remedios, Rolf Mager, Hugues Sassier, Michiel van Weele

Air Quality from Space; NCAR; February 2006





## Overview

- Introducing the ESA CAPACITY study
- Applications and User Requirements
- Some differences with IGOS-IGACO
- Measurement strategy and identified satellite level-2 data requirements
- Missing space elements in the 2010-2020 time period
- Mission concepts and measurement techniques for operational Air Quality applications
- Conclusions





## The CAPACITY strategy

- Envision a global monitoring system for atmospheric composition that integrates *space and ground-based* observations with models
- Collect the relevant operational applications and produce an inventory of user and geophysical data requirements (satellite and ground-based) per application
- Identify the missing space elements in the 2010-2020 time frame, concurrent with the operational use of MetOp, NPOESS and geostationary platforms
- Recommend measurement techniques and conceive possible mission concepts





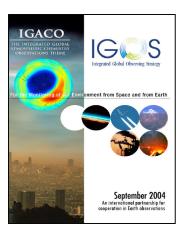
## **Study overview**

|                  | Consortium formation            | November 2002 |
|------------------|---------------------------------|---------------|
|                  | 'CAPACITY' proposal             | January 2003  |
|                  | Kick off                        | October 2003  |
| $\triangleright$ | User consultation workshop      | January 2004  |
| $\triangleright$ | Mid-term review / user feedback | August 2004   |
| $\triangleright$ | Final presentation              | June 2005     |
|                  | Final report                    | October 2005  |

## Key team

KNMI, Rutherford Appleton Laboratory, Univ. Bremen, Univ. Leicester,EADS-Astrium, Alcatel Space,+ wide range of consultants (users, modellers, retrieval experts)

### Website (ESA workshop; final report and documents)


http://www.knmi.nl/capacity





## **Basic Ingredients**

- CAPACITY workshop January 2004
- Environment and climate protection protocols, directives, etc. (EU & International)
- ESA GMES service element PROMOTE
- EU GMES-GATO report
- ➤ EUMETSAT user consultation process in the frame of geostationary program MTG (2015+)
- $\blacktriangleright$  IGOS-IGACO Theme report =>
- ➤ Long-term observation requirements from WMO, GCOS, WCRP, IGBP, ...
- Various scientific ESA studies
- ➤ Various EU framework research projects, e.g., Evergreen (CH<sub>4</sub>, CO, CO<sub>2</sub>)







# **Environmental themes, data usage, applications**

| Environmental<br>Theme                         | Ozone Layer &<br>Surface UV radiation                                                                                                                                                  | Air Quality                                                                                                                                                                                        | Climate                                                                                                                                                                          |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data usage                                     |                                                                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                  |
| Protocols                                      | UNEP Vienna Convention;<br>Montreal and subs.<br>Protocols<br>CFC emission verification<br>Stratospheric ozone,<br>halogen and surface UV<br>distribution and trend<br>monitoring      | UN/ECE CLRTAP; EMEP /<br>Göteborg Protocol; EC<br>directives EAP / CAFE<br>AQ emission verification<br>AQ distribution and trend<br>monitoring                                                     | UNFCCC Rio Convention;<br>Kyoto Protocol; Climate<br>policy EU<br>GHG and aerosol emission<br>verification<br>GHG/aerosol distribution<br>and trend monitoring                   |
| Services                                       | Stratospheric composition<br>and surface UV forecast<br>NWP assimilation and (re-)<br>analysis                                                                                         | Local Air Quality (BL); Health<br>warnings (BL)<br>Chemical Weather (BL/FT)<br>Aviation routing (UT)                                                                                               | NWP assimilation and (re-)<br>analysis<br>Climate monitoring<br>Climate model validation                                                                                         |
| Assessment                                     | Long-term global data records                                                                                                                                                          | Long-term global, regional,<br>and local data records                                                                                                                                              | Long-term global data records                                                                                                                                                    |
| (lower priority<br>for operational<br>mission) | WMO Ozone assessments<br>Stratospheric chemistry and<br>transport processes;<br>UV radiative transport<br>processes<br>Halogen source attribution<br>UV health & biological<br>effects | UNEP, EEA assessments<br>Regional & local boundary<br>layer AQ processes;<br>Tropospheric chemistry and<br>long-range transport processes<br>AQ source attribution<br>AQ Health and safety effects | IPCC assessments<br>Earth System, climate, rad.<br>forcing processes; UTLS<br>transport-chemistry<br>processes<br>Forcing agents source<br>attribution<br>Socio-economic climate |





## **Some differences with IGOS-IGACO**

- CAPACITY is on operational applications; it gives somewhat lower priority to science questions
- IGACO data requirements have not been specified per application. Instead, distinction has been made in a group-1 (existing systems) and group-2 (next generation systems) set of observables
- *IGACO* has four themes, *CAPACITY* three. The fourth theme of *IGACO* is the oxidising capacity, which in *CAPACITY* has been integrated in the "assessment" of the three other themes
- IGACO requirements are given on a per species and atmospheric domain basis, but the rationale behind each of the quantitative requirements has not been detailed in the IGACO report as in the CAPACITY study





### **Strategy to Data Requirements**

- Specify for each parameter the (threshold) resolution and revisit time requirements per atmospheric domain on the basis of the observed spatial and temporal variability
- Define a measurement strategy the different role of satellite data, ground-based networks and atmospheric models for each theme/user type combination
- Investigate the role of data assimilation for uncertainty requirements, also in relation with the established resolution and revisit time requirements and sampling/coverage
- > Define the **auxiliary data** requirements for the applications.
- Examine and try to understand differences with several existing tabulated data requirements





## **Strategy Air Quality Protocol Monitoring – example**

#### **Role of Satellite Measurements**

- Interpolation of surface networks in the PBL
- Boundary conditions for regional AQ models
- Tropospheric background and long-range transport
- Application to inverse modeling of surface emissions

#### **Role of Surface Networks**

- EU Framework Directives (surface concentrations)
- National Emission Ceilings (concentration monitoring to derive emissions)
- Gothenburg protocol on ground-level ozone
- Ship emissions (operational ship monitoring coastal waters)
- A representative network for surface concentrations and emissions in Europe
- Satellite and model validation, also by boundary layer profiling (LIDARS, Towers)

#### Auxiliary data

- Meteorology from NWP centers including surface data
- Emission inventories and estimates on sinks





# Summary of identified operational satellite data products for Air Quality

| <u>Observable</u>                                                                                                 | <u>User(s)</u>                                                                                                  | Domain(s)                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $O_3$<br>NO <sub>2</sub><br>CO<br>SO <sub>2</sub><br>CH <sub>2</sub> O<br>Aerosol OD<br>Aerosol Type              | all<br>all<br>all<br>all<br>all<br>all                                                                          | PBL/Troposphere<br>PBL/Troposphere<br>PBL/Troposphere<br>PBL/Troposphere<br>PBL/Troposphere<br>PBL/Troposphere<br>PBL/Troposphere |
| H <sub>2</sub> O<br>HNO <sub>3</sub><br>N <sub>2</sub> O <sub>5</sub><br>PAN / Org. nitrates<br>Surface UV albedo | all except protocol<br>all except protocol<br>all except protocol<br>all except protocol<br>all except protocol | PBL/Troposphere<br>PBL/Troposphere<br>PBL/Troposphere<br>PBL/Troposphere<br>Surface                                               |





# Summary of identified operational satellite data products for Ozone layer / surface UV

| Observable                                                                                                                                                                                            | <u>User(s)</u>                                                                                                                                                                                                 | <u>Domain(s)</u>                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O <sub>3</sub>                                                                                                                                                                                        | all                                                                                                                                                                                                            | Stratosphere, Troposphere                                                                                                                                                                                                                                                    |
| UV solar spectrum                                                                                                                                                                                     | all                                                                                                                                                                                                            | Top-of-Atmosphere                                                                                                                                                                                                                                                            |
| UV aerosol optical depth                                                                                                                                                                              | all                                                                                                                                                                                                            | Troposphere                                                                                                                                                                                                                                                                  |
| UV aerosol absorption optical depth                                                                                                                                                                   | all                                                                                                                                                                                                            | Troposphere                                                                                                                                                                                                                                                                  |
| Spectral UV surface albedo                                                                                                                                                                            | all                                                                                                                                                                                                            | Surface                                                                                                                                                                                                                                                                      |
| $H_2O$                                                                                                                                                                                                | NRT, assessment                                                                                                                                                                                                | Stratosphere                                                                                                                                                                                                                                                                 |
| $N_2O$                                                                                                                                                                                                | NRT, assessment                                                                                                                                                                                                | Stratosphere                                                                                                                                                                                                                                                                 |
| $CH_4$                                                                                                                                                                                                | NRT, assessment                                                                                                                                                                                                | Stratosphere                                                                                                                                                                                                                                                                 |
| $CO_2$                                                                                                                                                                                                | NRT, assessment                                                                                                                                                                                                | Stratosphere                                                                                                                                                                                                                                                                 |
| $HNO_3$                                                                                                                                                                                               | NRT, assessment                                                                                                                                                                                                | Stratosphere                                                                                                                                                                                                                                                                 |
| Volcanic aerosol                                                                                                                                                                                      | NRT, assessment                                                                                                                                                                                                | Stratosphere                                                                                                                                                                                                                                                                 |
| CFC-11<br>CFC-12<br>HCFC-22<br>ClO<br>BrO<br>SO <sub>2</sub><br>Aerosol surface density<br>PSCs<br>HC1<br>ClONO <sub>2</sub><br>CH <sub>3</sub> C1<br>HBr<br>BrONO <sub>2</sub><br>CH <sub>3</sub> Br | assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment<br>assessment | Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere<br>Stratosphere |





#### Summary of identified operational satellite data products for Climate

| Observable<br>CH <sub>4</sub>    | <u>User(s)</u><br>C1 | <u>Domain(s)</u><br>PBL, Troposphere |
|----------------------------------|----------------------|--------------------------------------|
| $CO_2$                           | C1                   | PBL, Troposphere                     |
| CO                               | C1                   | PBL, Troposphere                     |
| NO <sub>2</sub>                  | C1                   | PBL, Troposphere                     |
| 0 <sub>3</sub>                   | C1                   | PBL, Troposphere                     |
| Aerosol OD                       | C1                   | PBL, Troposphere                     |
| Aerosol absorption OD            | C1                   | PBL, Troposphere                     |
| H <sub>2</sub> O                 | C2, C3               | Troposphere, Stratosphere            |
| $O_3$                            | C2, C3               | Troposphere, Stratosphere            |
| CH <sub>4</sub>                  | C2, C3               | Stratosphere                         |
| CO <sub>2</sub>                  | C2, C3               | Stratosphere                         |
| N <sub>2</sub> O                 | C2, C3               | Stratosphere                         |
| Aerosol optical propertie        | esC2, C3             | Stratosphere                         |
| Cirrus optical properties C2, C3 |                      | Troposphere                          |
| HNO <sub>3</sub>                 | C3                   | Troposphere, Stratosphere            |
| NO <sub>2</sub>                  | C3                   | Stratosphere                         |
| $SF_6$                           | C3                   | Stratosphere                         |
| Cl compounds                     | C3                   | Stratosphere                         |
| N <sub>2</sub> O <sub>5</sub>    | C3                   | Stratosphere                         |
| PAN                              | C3                   | Troposphere                          |
| $\rm CO,  HCs,  CH_2O,  H_2O_2$  | C3                   | Troposphere                          |





## Main gaps in current / planned operational system

➢ High temporal/spatial resolution space-based measurements of tropospheric (PBL) composition for application to Air Quality

> Climate gases (CO<sub>2</sub>, CH<sub>4</sub> and CO) and aerosol monitoring with sensitivity to the PBL

High vertical resolution measurements in the UT/LS region for
Ozone layer and Climate applications





# **Mission concepts for Air Quality (1)**

#### System options

A sun-synchronous LEO platform and a GEO platform to satisfy spatio-temporal sampling requirements over Europe

➤ A constellation (~3) in inclined LEO to satisfy spatio-temporal sampling requirements globally at mid-latitudes

> A sun-synchronous LEO to complement Metop and NPOESS diurnal sampling with a mid-afternoon orbit





# **Mission concepts for Air Quality (2)**

#### Instrumentation

#### (1) combined solar backscatter and thermal IR sounding

- combination to provide optimal PBL sensitivity for O<sub>3</sub>, CO
- solar backscatter to provide column information on NO<sub>2</sub>, SO<sub>2</sub>, HCHO, aerosols at daytime with PBL sensitivity
- thermal IR to provide in addition nitrogen reservoir species (e.g., HNO<sub>3</sub>, PAN, organic nitrates,  $N_2O_5$ ), at day and night

#### (2) solar backscatter sounding only

• Column information on O<sub>3</sub>, NO<sub>2</sub>, CO, SO<sub>2</sub>, HCHO, aerosol OD at daytime

#### **Mission concept for Climate Protocol Monitoring**

System: A sun-synchronous LEO platform

Instrumentation: UV-vis-SWIR spectrometer for O<sub>3</sub>, NO<sub>2</sub>, CH<sub>4</sub>, CO, aerosol

- Thermal IR functionality by IASI
- $CO_2$  immature for an operational mission





# Key conclusions of the CAPACITY study w.r.t operational Air Quality missions

> User requirements for nine application areas have been addressed in detail

> A consistent set of satellite level-2 data requirements has been compiled for each application area

> The system for Air Quality should target user requirements on global coverage as well as optimal regional temporal sampling

> A trade-off is recommended between the three system options for Air Quality

> The climate protocol mission has important overlap with the global Air Quality mission – a combined implementation may turn out most efficient

> A limb-component could complement the nadir observations also for Air Quality