Ropospheric composition and Air Quality (TRAQ)

Pieternel Levelt, KNMI Claude Camy-Peyret, CNRS

TRAQ Science Objectives

- How fast is air quality changing on a global and regional scale?
- What is the strength and distribution of the sources and sinks of trace gases and aerosols influencing air quality?
- What is the role of tropospheric composition in global change?

Saturday 15 October 2005

Sunday 16 October 2005

Monday 17 October 2005

TRAQ will provide measurements of pollution at high horizontal resolution (10 km x 10 km) enabling detection of sub-mega city pollution

*Top: Sciamachy annual average (2004) of tropospheric NO*₂ *Van der A, Boersma, KNMI*

Left: OMI aerosol optical depth (15 June '05) (Veefkind, Curier)

TRAQ will be able to measure vertical transport of boundary layer pollution of CO and O_3 to the free troposphere

Region of high tropospheric ozone periodically observed in South Atlantic. Measurements by OMI and TES (Ziemke, Beer)

 O_3 profile retrieval based on UV, VIS and TIR retrieval, Landgraf et al.

Coheur et al., CO boundary layer, IMG

OMI tropospheric NO₂ and Chimere model output. Courtesy: Boersma, Eskes, Blond, Van der A

Marylebone Road, London, June 22-24th, 2005

- TRAQ will detect pollution up to 5 times a day
- TRAQ will be able to measure the diurnal cycle

Left: Diurnal cycle of air pollutants and aerosols in London at street-level (Courtesy I. Kilbane-Dawe, CERC)

TRAQ will help determining to what extent Europe's background pollution is caused by global transport of pollution from other continents

<u>Below</u>: Long range transport of CO over ocean : Terra-MOPITT CO assimilated in MOCAGE model (Attié et al.)

Model simulation of O_3 in July 2030 (Hauglustaine et al) <u>Right</u>: O_3 change in ppb in 2030 under IIASA "current legislation scenario" <u>Upper left</u>: O_3 reduction due to corresponding decrease of NO_x , CO and VOC emissions over Europe <u>Lower left</u>: O_3 increase due to long range transport from USA and Asia causes O_3 increase over Europe

Sources and sinks : Emission estimates

- TRAQ will be able to constrain natural sources and sinks
- TRAQ will be able to constrain anthropogenic emissions
- TRAQ enables estimates of seasonal and interannual variations in emissions together with the geographical distribution of emissions
- TRAQ contributes to improved understanding of sinks: Oxidizing capacity (via OH budget: trop O₃, NO_x and CO, CH₄) and deposition (aerosols)

Left: Model CH_4 (TM3) Bottom: SCIA CH_4 , Frankenberg et al., Science, 2005

*Veefkind et al. OMI Trop. NO*₂ *May-September 2005 average*

Global Change

- TRAQ will be able to contribute to understanding the interaction between tropospheric composition and global change.
- The atmospheric components of bio-geo-chemical cycles of C,N and S
- Direct radiative forcing agents: CH₄, aerosols, tropospheric ozone
- Precursors of forcing agents: CO, CH₄, NO₂, SO₂, HCHO

Orbit

Non-sun synchronous LEO orbit:

- Measures air pollution at midlatitude up to 5 times a day with 90 minutes interval
- Retains most of global coverage, except for poles

Range:

- Swath: 2000 2600 km
- Pixel sizes: 5 km × 5 km to 10 km × 10 km

LEO versus GEO

GEO does not provide global coverage and such detailed characteristics of aerosol

Movie of orbit

TRAQ Payload

TROPOMI:Backscatter instrument (trop) columns of O_3 ,
N O_2 , S O_2 , HCHO, aerosols & CO and CH₄.
Heritage: Aura-OMI, Envisat-Sciamachy

SIFTI (FTIR): O_3 , CO, CH₄: trop columns and profiles with intelligent pointing for cloud free pixels. Heritage: IASI

OCAPI:

POLDER type of instrument: AOD, single scattering albedo (ω_0), Air quality index (AQI), aerosol sizes and aerosol type. Heritage: POLDER, PARASOL

TRAQ Satellite

TRAQ instrument and retrieval features

- Improved retrieval of tropospheric pollutants by small ground pixels and accurate determination of surface properties, cloud fraction and cloud top pressure (O₂-A band NIR channel of TROPOMI) and aerosol determination by OCAPI.
- Combination of UV, SWIR and TIR retrieval for CO and O₃ provides unique information on vertical distribution of O₃ and CO.
- Almost daily global measurements of CO, CH₄ using imaging detectors for TROPOMI/SIFTI : enabling large coverage and high horizontal resolution
- Unique cloud screening by SIFTI, optimising detection of tropospheric pollutants, detecting the holes in the clouds deck.
- Improved 2D detectors for UV/VIS/NIR : S/N and radiation hardness
 "Kernels and Clouds"

TRAQ Summary

- TRAQ will contribute to tropospheric composition measurements:
 - with high temporal resolution
 - high horizontal resolution
 - will track vertical transport of CO and O₃
 - (BL to the free troposphere)
 - enabling improved emission estimates
 - affecting the radiation balance
- TRAQ has an innovative instrument suite combined with proven technology
- TRAQ's non-synchroneous LEO orbit combines high temporal resolution with global coverage.

OMI measurements: Left: Tropospheric NO₂ Middle: Formaldehyde Right: Aerosol Opt. Depth © Eskes, Kurosu, Torres

Acknowledgements

- The Netherlands:
 - H. Eskes, I. Aben, B. van den Oord, P. Veefkind, and M. van Weele
- France:
 - D. Tanré, T. Phulpin, P. Hebert, D. Hauglustaine, and C. Clerbaux

BACKUP SLIDES

Key Observables (1)									
Product	Column	Instrument	Nadir ground-	Swath	Uncertainties				
			pixel (km²)	(km)	Nom.	Min.			
NO ₂	Total	TROPOMI	8 × 10	2600	2%	3%			
	Tropospheric	TROPOMI	8 × 10	2600	6%	13%			
O ₃	Total	TROPOMI	16 × 40	2600	0.5%	2%			
		SIFTI	10 × 10	2000 *	1%	1%			
	Tropospheric	TROPOMI	8 × 10	2600	15%	35%			
		SIFTI	10 × 10	2000 *	6%	10%			
CO	Total ¹⁾	SIFTI	10 × 10	2000 *	5%	11%			
		SIFTI	10 × 10	2000 *	3%	15%			
		TROPOMI+SWIR	10 × 10	2600	6%	19%			
SO ₂	Total ¹⁾	TROPOMI	8 × 10	2600	5%	10%			
НСНО	Total ¹⁾	TROPOMI	8 × 10	2600	25%	55%			
CH ₄	Total ¹⁾	SIFTI	10 × 10	2000 *	0.4%	2.5%			
		TROPOMI+SWIR	10 × 10	2600	0.1%	0.5%			

1) = total column \approx tropospheric column.

For SO₂ there is a stratospheric contribution during short periods after an volcanic eruption.

2000 * = swath of 2000 km (1 pixel every 50 km + optional intelligent pointing)

Key Observables (2)

Aerosol Type	Instr.	Nadir ground- pixel (km²)	Swath (km)	Accuracy
Aerosol Optical Thickness (AOT)	OCAPI	4 × 4	1700	0.03 × AOT + 0.03
AOT (fine fraction)	OCAPI	4 × 4	1700	0.03 × AOT + 0.03
Angstrom coefficient (total)	OCAPI	4 × 4	1700	0.2
Angstrom coefficient (fine)	OCAPI	4 × 4	1700	0.3
PM2.5 (μg m ⁻³)	OCAPI	4 × 4	1700	10
Eff. radius fine mode (µm)	OCAPI	4 × 4	1700	0.1
Eff. radius coarse mode (µm)	OCAPI	4 × 4	1700	0.3
Refractive index (real part)	OCAPI	4 × 4	1700	0.05
Aerosol type (% misassignment)	OCAPI	4 × 4	1700	8%
AOT (UV wavelengths)	TROPOMI	8 × 10	2600	15%
Single scattering albedo (UV wavelengths)	TROPOMI	8 × 10	2600	0.05
Aerosol absorption index	TROPOMI	8 × 10	2600	1%

Key Observables (3)

Profile products from	Nominal			Minimum		
SIFTI	DoF	Vertical Resolution	Unc.	DoF	Vertical Resolution	Unc.
O ₃ Stratospheric profile	4.7	12-18 km 18-24 km 24-30 km	5% 3% 3%	3.8	12-18 km 18-24 km 24-30 km	9% 5% 4%
O₃ Tropospheric profile Can be improved by combining with TROPOMI measurements	2.6	0-6 km 6-12 km	10% 10%	2.3	0-6 km 6-12 km	23% 13%
CO Tropospheric profile	2.7	0-3 km 3-7 km 7–12 km	6% 5% 5%	1.8	0-3 km 3-12 km	16% 6%

DoF = Degrees of Freedom Nadir ground pixel size = 10 km × 10 km Swath = 2000 km (1 pixel every 50 km + optional intelligent pointing)

TROPOMI Fact Sheet

	UV1 (TBD)	UV2	VIS	NIR	SWIR	
Range (nm)	270-320	300-400 380-490 710-77		710-775	2305-2385	
Resolution (nm)	1.1	0.45 0.52 0.45			0.25	
Sampling (nm)	~0.4	0.15	~0.18	0.125		
Signal to Noise (minimum scenario)	100-1000	1000 1500 100-500		95		
Ground pixel (km ²)	16 × 40		8 × 10	10 × 10		
Swath		2600	2600 km			
Dimension (m ³)	0.56 × 0.45 × 0.38				$0.45 \times 0.3 \times 0.2$	
Mass (OPB+Detect.)	35 kg				17 kg	
Temp. OPB		220 K				
Temp. detector		165 K				
Data rate	2 – 8 Mb/s				1 -3.5 Mb/s	
Power (W)	90 (Nominal) – 150 (Peak)				15 (N) - 70 (P)	

OCAPI Fact Sheet

	1	2	3	4 / 5 Option	6	7	8	9	
Central wavelength (nm)	443	490	670	763 / 765	865	1370	1650	2130	
width (nm)	20	20	20	10 / 40	40	40	40	40	
Polarization		Р	Р				Р	Р	
Signal to Noise	200 (minimum scenario)								
Number of viewing angles	15 successive angles								
Ground pixel	4 km × 4 km								
Swath	1700 km								
Dimension	0.40 m × 0.52 m × 0.36 m								
Mass	30 kg								
Data rate	3 Mb/s								
Power				30 W (Nominal)					

SIFTI Fact Sheet

	B1	B2	B 3				
Range (cm ⁻¹)	1026-1064	2100-2142	4270-4300				
Resolution (cm ⁻¹)	0.125	0.125	0.150				
Sampling (cm ⁻¹)	0.0625	0.0625	0.0625				
Signal to Noise (minimum scenario)	800	350	100				
Ground pixel	10 km × 10 km						
Horizontal sampling	1 pixel every 50 km						
	+ Intelligent pointing with CLIM (optional)						
Swath	1700 km						
Dimension	0.90 m × 0.60 m × 0.30 / 0.45 m (S / S+C)						
Mass	70 kg (SIFTI) + 8 kg (CLIM – optional)						
Temp. detector	65 K- 90 K						
Data rate	6 Mb/s						
Power	100 W (Nominal) – 150 W (Peak)						

SIFTI/CLIM Intelligent Pointing

Hole hunting: Cloud-free pixels occurrence with optimized sampling (viewing in cloud holes)

- All AVHRR acquisitions, 4 times a week (Dec., March, June, Sept.)
- CMS operational cloud mask
 - 5 channels: 0.6 $\mu m,$ 0.8 $\mu m,$ 3.7 $\mu m,$ 11.0 $\mu m,$ 11.8 μm
 - Forecast of Ts and CWV
 - Full resolution
 - Highest resolution
- 50 km × 50 km boxes (Fields of Regards) and each SIFTI pixel located at the center in a normal scan (regular sampling)
- Simulation of intelligent pointing → selection of the clearest location in each FOR

Edge of Orbit

UNDE FINED

FRACTIONAL

SENI_ABOVE

SENI_THCK

SENI_THCK

SENI_THN

VH_OPAQ

H_OPAQ

H_OPAQ

LOW

VLOW

Sealce

Snow

Seal

Ind

Cloud-free pixel occurrence with and without hole hunting

PARASOL, July 2005 Accumulation mode

PARASOL, August 2005 Accumulation mode

Gridded at 1x1deg from MOP02-20050831-L2V5.9.4.val.hdf (apriori fraction < 50%)

30

60

90

120

150

-150 -120

-90

-60

- EU

1.00

0.00

Aerosol Detection in the UV: A Unique OMI Capability

Aerosol detection above clouds: OMI Aerosol Index (color scale) OMI reflectivity (gray scale)

Aerosol detection above land and ocean.

Torres, Bhartia, NASA GSFC

Distinguish between absorbing and non-abs. aerosols: biomass burning, dust, industrial aerosols OMI Aerosol Optical Depth ; Dust storm over Sahara