Observation of Atmospheric Composition Effects in an SPE with OSIRIS on Odin

Calculated Ionization Rates from GOES data and GEANT4 model

Data courtesy M.-B. Kallenrode

Agostinelli, S. et al.: GEANT4 - a simulation toolkit, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Eugipment, 506(3), 250-303, 2003.

Ozone Depletion during Solar Proton Storm October 2003

Twilight and nighttime structures seen in OH and O₂ IR Atmospheric band emissions. Orbit 191F on April 29, 2002.

Figure 2. Single altitude VER cross sections that compare the results from three in-SPE orbits with the baseline orbit, 31/10/2003. The cross sectional slices are from 65 km and 55 km for panels a) and b) respectively.

£4

Ozone Depletion during Solar Proton Storm October 2003

Observed interhemispheric differences due to the lower ambient HO_x background!

(ACE-FTS H_2O + Model) vs (OSIRIS OH)

- 'Validate' OSIRIS OH
- Use ACE-FTS H₂O with Model
- Latitude within 2°
- Local Time within 30 minutes

[GRL 2006]

U.S. Dept. of Commerce, NOAA, Space Environment

Center(http://www.swpc.noaa.gov/ftpdir/indices/SPE.txt)Solar Proton Events Affecting the Earth Environment during Odin Mission and possibly seen with OSIRIS

February 20, 2001 - December 31, 2008 -----PARTICLE EVENT------Start Maximum Proton Flux (pfu @ >10 MeV) (Day/UT)2001 Odin Launch February 20, 2001/0948 Apr 03/0745 Apr 02/2340 1110 NO DATA Sep 24/1215 Sep 25/2235 12900 ASTRONOMY MODE Oct 01/1145 Oct 02/0810 2360 Nov 04/1705 Nov 06/0215 31700 Nov 22/2320 Nov 24/0555 18900 2002 Apr 21/0225 Apr 21/2320 2520 2003 Oct 28/1215 Oct 29/0615 29500

2004 Jul 25/1855	Jul 26/2250	2086	ASTRONOMY MODE
2005 Jan 16/0210 May 14/0525 Sep 08/0215	Jan 17/1750 May 15/0240 Sep 11/0425	5040 3140 1880	
2006 Dec 06/1555	Dec 07/1930	1980	
2007 none			
2008 none 			

Note: Proton fluxes are integral 5-minute averages for energies > 10 MeV, given in Particle Flux Units (pfu), measured by GOES spacecraft at Geosynchronous orbit: 1 pfu = 1 p/sq. cm-s-sr.

The observed orbit average OH Meinel band emission

We have far more data than we can analyze in a reasonable time. The atmospheric change associated with auroral precipitation is now being detected through the nighttime [NO] profile. We can also see [NO] in the daytime and will shortly submit a paper on the day and night global [O] profile.

E.J. Llewellyn, **R.L. Gattinger**, N.D. Lloyd, A.E. Bourassa, D.A. Degenstein, P. Sheese and I.C. McDade

