

# Production of H, OH, HNO<sub>2</sub>, and HNO<sub>3</sub> by particle precipitation

P. T. Verronen

Finnish Meteorological Institute, Earth Observation, Helsinki, Finland

2nd International HEPPA Workshop Boulder, Colorado, USA October 2009



# The CHAMOS Team

#### P. T. Verronen, E. Kyrölä, J. Tamminen, S.-M. Salmi

Finnish Meteorological Institute, Earth Observation, Helsinki, Finland

#### E. Turunen

EISCAT Scientific Association, Kiruna, Sweden

#### Th. Ulich, C.-F. Enell, A. Kero, T. Raita

Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland

#### C. J. Rodger

University of Otago, Department of Physics, Dunedin, New Zealand

#### M. A. Clilverd, A. Seppälä

British Antarctic Survey (NERC), Physical Sciences Division, Cambridge, UK



## **Atmospheric effects of EPP**



Ozone connects to temperature and dynamics



## **EPP:** production of $HO_{\times}$ (and $HNO_{\times}$ ) species





## Sodankylä Ion and Neutral Chemistry (SIC)







From Verronen et al., Geophys. Res. Lett., 2006





From Verronen et al., Geophys. Res. Lett., 2008



## New parameterization of EPP effects

### Why is it needed?

- Currently, production of  $HNO_3$  and  $HNO_2$  is ignored
- Balance between  $HO_x$  and  $HNO_3$  production is important
  - Depends on solar illumination (solar zenith angle)
  - Determines if the ion chemistry effects are short-term or long-term
- Ion chemistry is computationally expensive (64 ions, hundreds of reactions)



# SIC-based P/Q numbers

- P/Q numbers?
  - Chemical production rate divided by ionization rate
  - Separate number for H, OH, HNO\_2, and HNO\_3
  - Different set of  $\mathsf{P}/\mathsf{Qs}$  for different seasons of the year
- Based on an ensemble of model runs
  - Latitudes  $50^{\circ} 75^{\circ}$
  - Ionization rates  $10^0$   $10^5\ cm^{-3}s^{-1}$
- Altitude profiles of P/Qs
  - Averaged over latitudes, into 5°-wide bins of SZA

# P/Q: dependence on altitude January NH, $Q = 10^3 \text{cm}^{-3}\text{s}^{-1}$ , SZA = $105^{\circ}$



Production of OH and  $HNO_2$  depends on the amount of  $H_2O$ Production of HNO<sub>3</sub>/H depends also on  $[NO_3^-]/([e^-] + [X^-])$  ratio



# P/Q: dependence on SZA January NH, $Q = 10^3 \text{cm}^{-3}\text{s}^{-1}$





#### **P/Q:** dependence on ionization rate



• Sum of  $P/Qs = (P_H + P_{OH} + P_{HNO_2} + P_{HNO_3})/Q$ 

• Neutral composition of the atmosphere affects P/Qs



## Using P/Qs in atmosphere models: tables

Table 9.  $P_{\rm HNO_3}/Q$  for October NH.

| Q  | 101  | $10^{2}$ | 10 <sup>3</sup> | $10^{4}$ | $10^{5}$ | 101  | $10^{2}$ | 10 <sup>3</sup> | $10^{4}$ | $10^{5}$ | 101  | $10^{2}$ | 10 <sup>3</sup> | $10^{4}$ | 10 <sup>5</sup> |
|----|------|----------|-----------------|----------|----------|------|----------|-----------------|----------|----------|------|----------|-----------------|----------|-----------------|
| km |      | SZA      | $\leq$          | 90°      |          |      | SZA      | =               | 95°      |          |      | SZA      | $\geq$          | 100°     |                 |
| 90 | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.00 | 0.00     | 0.00            | 0.00     | 0.00            |
| 85 | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.00 | 0.00     | 0.00            | 0.00     | 0.00            |
| 80 | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.03 | 0.01     | 0.00            | 0.00     | 0.00            |
| 75 | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.06 | 0.04     | 0.04            | 0.01     | 0.00            |
| 70 | 0.00 | 0.00     | 0.00            | 0.00     | 0.00     | 0.01 | 0.01     | 0.01            | 0.01     | 0.01     | 0.19 | 0.13     | 0.12            | 0.07     | 0.03            |
| 65 | 0.00 | 0.00     | 0.00            | 0.01     | 0.01     | 0.06 | 0.04     | 0.05            | 0.06     | 0.04     | 0.44 | 0.29     | 0.27            | 0.20     | 0.10            |
| 60 | 0.00 | 0.00     | 0.02            | 0.05     | 0.06     | 0.19 | 0.15     | 0.17            | 0.21     | 0.16     | 0.68 | 0.51     | 0.44            | 0.41     | 0.27            |
| 55 | 0.02 | 0.03     | 0.08            | 0.18     | 0.22     | 0.44 | 0.39     | 0.36            | 0.42     | 0.37     | 0.79 | 0.71     | 0.60            | 0.60     | 0.49            |
| 50 | 0.09 | 0.14     | 0.22            | 0.36     | 0.46     | 0.61 | 0.62     | 0.56            | 0.58     | 0.62     | 0.77 | 0.79     | 0.72            | 0.73     | 0.72            |
| 45 | 0.45 | 0.42     | 0.44            | 0.51     | 0.59     | 0.80 | 0.75     | 0.66            | 0.63     | 0.68     | 0.86 | 0.82     | 0.77            | 0.74     | 0.78            |
| 40 | 0.85 | 0.78     | 0.64            | 0.55     | 0.57     | 0.90 | 0.83     | 0.69            | 0.59     | 0.62     | 0.94 | 0.88     | 0.77            | 0.69     | 0.72            |
| 35 | 0.89 | 0.80     | 0.62            | 0.46     | 0.45     | 0.90 | 0.81     | 0.63            | 0.48     | 0.49     | 0.94 | 0.87     | 0.72            | 0.58     | 0.60            |
| 30 | 0.79 | 0.65     | 0.41            | 0.25     | 0.24     | 0.80 | 0.66     | 0.43            | 0.27     | 0.27     | 0.85 | 0.73     | 0.51            | 0.34     | 0.35            |
| 25 | 0.54 | 0.40     | 0.20            | 0.11     | 0.10     | 0.54 | 0.40     | 0.21            | 0.12     | 0.12     | 0.60 | 0.46     | 0.26            | 0.15     | 0.16            |
| 20 | 0.33 | 0.25     | 0.13            | 0.06     | 0.05     | 0.32 | 0.25     | 0.12            | 0.06     | 0.06     | 0.35 | 0.26     | 0.13            | 0.07     | 0.07            |

Needed: SZA and ionization rate Output: Production rates of H, OH, HNO<sub>2</sub>, and HNO<sub>3</sub>



#### **3-D modelling with P/Q parameterization** HNO<sub>3</sub> (ppbv) at 45 km, Oct–Dec 2003, FinROSE CTM



For more, see the poster by Salmi et al.



## Summary

- EPP produces H, OH, HNO<sub>2</sub>, and HNO<sub>3</sub> through ion chemistry
- $\bullet~P/Q$  numbers provide a simple way to include ion chemistry effects in any atmospheric model
- Sets of P/Qs have been calculated with the Sodankylä lon and Neutral Chemistry Model (SIC), taking into account the dependence on SZA, ionization rate, and season of the year
- Validation of the new P/Q numbers is needed