Modeled impact of atmospheric ionisation by solar protons and magnetospheric electrons on upper stratospheric constituents compared with MIPAS measurements

Nadine Wieters

M. Sinnhuber, H. Winkler, B.-M. Sinnhuber, J. Notholt IUP Uni Bremen

Jan Maik Wissing - Uni Osnabrück

Gabriele Stiller - IMK Forschungszentrum Karlsruhe

October 7, 2009 2nd International High Energy Particle Precipitation in the Atmosphere (HEPPA) Workshop

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	0000000	00

- 2 Simulations & Results
- 3 Model comparison

Motivation	Simulations & Results	Model comparison	Conclusion
•0	0000	000000	00

Motivation

Figure: Daily mean AIMOS ionisation rates for protons (red) and electrons (blue) for October 1, 2003 - February 29, 2004

Motivation	Simulations & Results	Model comparison	Conclusio
0•	0000	0000000	00

Motivation

Figure: ΔNO_x near NyÅlesund, Svalbart

Motivation	Simulations & Results	Model comparison	Conclusio
0•	0000	0000000	00

Motivation

Figure: ΔO_3 near NyÅlesund, Svalbart

Motivation 00 Simulations & Results

Model comparison

Conclusion

The Bremen 3d CTM

- global 3d Chemistry and Transport Model (CTM)
- driven by meteorological data (temperature, pressure, wind fileds): ECMWF operational
- horizontal transport along isentropes calculated from analysed wind fields
- vertical transport across isentropes calculated from diabatic heating rates
- neutral chemistry model, 57 tracer, families (O_x, NO_x, HO_x, ClO_x, BrO_x)
- JPL 2006
- ionisation rates from AIMOS model [Wissing et al., 2008]
- parameterised NO_{x} and HO_{x} production:
 - 1.25 $\rm NO_{x}$ (55% NO, 45% N) [Porter et al., 1976]
 - \leq 2 HO_x [Solomon et al., 1981]

Universität Bremen

Motivation oo Simulations & Results

Model comparison

Conclusion

The Bremen 3d CTM

- horizontal resolution
 - 96 longitudes
 - 72 latitudes
 - 3.75°×2.5°
- vertical resolution
 - 28 isentropes
 - 10 65 km
 - 1 4 km

adapted from Jan Aschmann

Modele	d impact of atmospheric ionis	sation by solar protons and	l magnetospheric electrons	
Motiv	vation Simulations	& Results Mo	del comparison Concle 0000 00	usion
Brer	men 3d CTM simi	ulations		
	Met	.data: ECMWF oper	rational	J
		AIMOS Ionisation ra	tes	J
	Scenario A	AIMOS Ionisation ra Scenario B	tes Scenario C	J
	Scenario A no ionisation rates	AIMOS Ionisation ra Scenario B protons	tes Scenario C protons + electrons	

Motivation oo Simulations & Results $\circ \circ \circ \bullet$

Model comparison

Conclusion

NO_{x} response to different ionisation forcing

Figure: ΔNO_x [ppbv] at 56km altitude. Absolute differences for scenarios B and C to scenario A [Wissing et al., 2009]

Motivation oo Simulations & Results

Model comparison

Conclusion

O₃ response to different ionisation forcing

Figure: ΔO_3 [%] at 56km altitude. Percentage difference for scenarios B and C to scenario A [Wissing et al., 2009]

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	•000000 ·	00

Ozone

Bremen 3d-CTM $\Delta(\Delta O_3)$ [ppmv] 56km October 26, 2003 DAY

Figure: ΔO_3 (scenario C - scenario B)

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	000000	00

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	000000	00

Ozone

Bremen 3d-CTM (((AO3) [ppmv] 56km October 31, 2003 DAY

Figure: ΔO_3 (scenario C - scenario B)

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	0000000	00

NO

Figure: NO at 56km altitude, October 26, 2003 for scenario B (left) and C (right)

Figure: NO at 56km altitude, November 1, 2003 for scenario B (left) and C (right)

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	0000000	00

HNO₃ & NO₂

Figure: HNO_3 at 56km altitude for scenario B (left) and C (right), model results underlying, circles: MIPAS

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	0000000	00

HNO₃ & NO₂

Figure: HNO_3 at 40km altitude for scenario B (left) and C (right), model results underlying, circles: MIPAS

Motivation 00

Simulations & Results

Model comparison

Conclusion

HNO₃ & NO₂

Figure: ΔHNO_3 and ΔNO_2 (Difference to October 26, 2003)

Motivation 00

Simulations & Results

Model comparison

Conclusion ••

- NO_x increase due to ionisation by electrons before the SPE
- enhanced NO_x production during SPE
- a larger decrease of ozone
- larger ozone depletion in mid latitudes
- enhanced HNO_3 production in high altitudes due too high amounts of NO_2

Thank You!

Motivation

Simulations & Results

Model comparison

Conclusion 0.

- Porter, H., Jackman, C., and Green, A. (1976). Efficiencies for Production of atomic Nitrogen and Oxygen by relativistic Proton Impact in Air. Journal of Chemical Physics, 65(1):154–167.
- Solomon, S., Rusch, D., Gerard, J., Reid, G., and Crutzen, P. (1981).The Effect of Particle-Precipitation Events on the neutral and Ion Chemistry of the middle Atmosphere .2. Odd Hydrogen.

Planetary and Space Science, 29(8):885–892.

Wissing, J., Bornebusch, J., and Kallenrode, M. (2008). Variation of energetic particle precipitation with local magnetic time.

Advances in Space Research, 41(8):1274–1278.

Motivation	Simulations & Results	Model comparison	Conclusion
00	0000	0000000	0.

Wissing, J. M., Kallenrode, M.-B., Wieters, N., Winkler, H., and Sinnhuber, M. (2009).

Atmospheric ionisation module osnabrück (aimos) 2: Total particle inventory in the october/november 2003 event and ozone.

Journal of Geophysical Research, ?:?

