

How important is excess vibrational energy for modelling upper atmospheric chemistry?

Thomas von Clarmann, Bernd Funke, Frank Hase, Manuel López-Puertas, Johannes Orphal, Roland Ruhnke

Does excess vibrational energy change reaction rates?

- Reactants should be abundant in the middle/upper atmosphere.
- Reactants should be in strong non-local thermodynamic equilibrium. Chemical non-LTE preferable over radiative non-LTE (larger population of vibrational excited states)
- Reaction should be relevant to ozone chemistry.
- Literature on k(v) needed.

- Reactants should be abundant in the middle/upper atmosphere.
- Reactants should be in strong non-local thermodynamic equilibrium. Chemical non-LTE preferable over radiative non-LTE (larger population of vibrationally excited states)
- Reaction should be relevant to ozone chemistry.
- Literature on k(v) needed (we use: Varandas and Zhang, Chem. Phys. Lett. 340, 62-70, 2001: Varandas, Chem Phys.Lett. 396, 182-190, 2004)
 Selected reactions for this study:

 $OH(v=0...9) + O_3 \rightarrow O_2 + HO_2$ $OH(v=0...9) + O \rightarrow O_2 + H$

Populations of vibrational states of OH

The effective rate coefficient is the population-weighted mean of vibrational state dependent rate coefficients.

$$k_{eff} = \frac{1}{[OH(v = 0...9)]} \sum_{v=0}^{9} k_v [OH(v)].$$

HEPPA 2009

Universität Karlsruhe (TH) Research University · founded 1825

How important is this? Comparison with competing reactions

Ox loss:	$\mathrm{OH}(v=09) + \mathrm{O}_3 \rightarrow \mathrm{O}_2 + \mathrm{HO}_2$	(R1)	
	$\mathrm{O}_3 + \mathrm{O}(^3\mathrm{P}) \to 2\mathrm{O}_2$	(R3)	
	$\mathrm{O}_3 + \mathrm{O}(^1\mathrm{D}) + \mathrm{M} \rightarrow 2\mathrm{O}_2 + \mathrm{M}$	(R4)	
	$\rm O+O+M \rightarrow O_2 + M$	(R5)	
	$\mathrm{H} + \mathrm{O}_3 \rightarrow \mathrm{O}_2 + \mathrm{OH}(v = 19)$	(R2)	
	$\rm OH+O\rightarrow O_2+H$	(R6)	
	$\mathrm{HO}_2 + \mathrm{O} \rightarrow \mathrm{O}_2 + \mathrm{OH}$	(R7)	
	$\rm HO_2 + O_3 \rightarrow 2O_2 + OH$	(R8)	
	$\rm NO + O_3 \rightarrow \rm NO_2 + O_2$	(R9)	
	$\rm NO_2 + O \rightarrow \rm NO + O_2$	(R10)	
	$\rm Cl+O_3 \rightarrow \rm ClO+O_2$	(R11)	
	$\rm ClO + O \rightarrow \rm Cl + \rm O_2$	(R12)	
	$\rm H_2O_2 + O \rightarrow OH + HO_2$	(R13)	
	$\mathrm{NO}_2 + \mathrm{O}_3 \rightarrow \mathrm{NO}_3 + \mathrm{O}_2$	(R14)	

8

Excess relative Ox sink strength

Universität Karlsruhe (TH) Research University · founded 1825

How important is this? Comparison with competing reactions

O₃ loss: R1-4, R8-9, R11, R14, and additionally:

$$O_3 + h\nu \to O_2({}^3\Sigma_g^-) + O({}^3P)$$
 (R15)

and

$$O_3 + h\nu \to O_2(^1\Delta_g) + O(^1D), \tag{R16}$$

How important is this? Comparison with competing reactions

OH loss:	$\mathrm{OH}(v=09) + \mathrm{O}_3 \rightarrow \mathrm{O}_2 + \mathrm{HO}_2$	(R1)
	$\rm OH+O \rightarrow O_2 + H$	(R6)
	$\mathrm{OH} + \mathrm{CO} \rightarrow \mathrm{CO}_2 + \mathrm{H},$	(R17)
	$\mathrm{OH} + \mathrm{OH} + \mathrm{M} \rightarrow \mathrm{H_2O_2} + \mathrm{M},$	(R18)
	$\mathrm{OH} + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2,$	(R19)
	$\mathrm{OH} + \mathrm{H_2} \rightarrow \mathrm{H_2O} + \mathrm{H},$	(R20)
	$\mathrm{OH} + \mathrm{H_2O_2} \rightarrow \mathrm{H_2O} + \mathrm{HO_2},$	(R21)
	and	
	$OH + OH \rightarrow H_2O + O.$	(R22)

Is this important? Comparison with competing reactions

HO_2 sources

 $\mathrm{OH} + \mathrm{H}_2\mathrm{O}_2 \to \mathrm{H}_2\mathrm{O} + \mathrm{HO}_2, \tag{R21}$

 $\mathrm{H} + \mathrm{O}_2 + \mathrm{M} \to \mathrm{HO}_2 + \mathrm{M}, \tag{R25}$

$OH(v=0...9) + O_3 \rightarrow O_2 + HO_2$

- Resulting HO₂ is predicted to be in a vibrational state beyond its dissociation limit.
- Quantum yields for this reaction path are less than unity.
- Other possible products are:

 $O_2 + H + O_2$ $O_2 + OH + O$

- Source strength of HO_2 may be overestimated.
- Sink strengths of Ox and OH may be overestimated.
- How does vibrationally excited HO₂ react?

$OH(v=0...9) + O \rightarrow O_2 + H$

Universität Karlsruhe (TH) Research University · founded 1825

17

18

Universität Karlsruhe (TH) Research University · founded 1825

Conclusion:

ℬ Bad news: this research topic won't make me rich and famous, nor will it considerably increase my h-index

Conclusion:

Bad news (for me): this research topic won't make me rich and famous, nor will it considerably increase my hindex

- Good news (for you): by now there is no evidence that anything is wrong with conventional (Arrhenius-type, LTE) chemistry modelling.
- Caveat: SPE conditions have not yet been investigated.
- Caveat: vibrationally excited NO, O₃, CO, HO₂ etc may also be an issue

Thank you!

HEPPA 2009

Universität Karlsruhe (TH) Research University · founded 1825

21