Geoeffectiveness of precipitating auroral and ring current electrons in the Earth's upper and middle atmosphere

Xiaohua Fang (CU/LASP), Cora Randall (CU/LASP)

Acknowledgements: Michael Mills (CU/LASP) Dirk Lummerzheim (UAF) Stanley Solomon (NCAR) Daniel Marsh (NCAR) Charles Jackman (NASA/GSFC) Wenbin Wang (NCAR) Gang Lu (NCAR)

<u>Outline</u>

- Motivation;
- Introduction of a new parameterization method for electron impact ionization calculation;
- Geoeffectiveness of e⁻ precipitation on the atmosphere;
- Conclusion.

Parameterization of ionization

•Goal: derive simple functions to fit the altitude profile of the ionization rate from precipitating electrons and ions.

- •A newly created parameterization method [Fang et al., 2008]
 - •Fit to model results (Twostream and multi-stream electron transport models);
 - •Works for *E*₀=100 eV to 1 MeV precipitating electrons;
 - •Energy dependent;
 - •Atmospheric independent;

Whole Atmosphere Community Climate Model (WACCM)

WACCM Parameterization of Precipitation Effects

Aurora

- Input = Kp
- Distribution = Auroral Oval
- Roble and Ridley [1987]

Medium Energy Electrons

(30 keV - 2.5 MeV)

- Input = NOAA/MEPED activity level (or hemispheric power)
- Distribution = statistical patterns by Codrescu et al. [1997]
- Fang et al. [2008]

(Adapted from Rolando Garcia)

Compare 3 cases:

- Case 1: essentially no particle precipitation, Kp=2/3 (Ap=3)
- Case 2: includes moderate auroral electrons, Kp=4 (Ap=27)
- Case 3: includes auroral electrons plus NOAA/MEPED >30 keV electrons (level 1)

MIPAS, Funke et al. [2005]

WACCM3 NO_X

• 70°-90° SH

Aurora + low-level MEE (case 3, close to realistic 2003 geomagnetic activity)

WACCM simulation similar to MIPAS, but WACCM underestimates $EPP-NO_x$ by about a factor of 2.

Change in NO_x due to EPP Annual Averages

Aurora Effect

MEE Effect

Change in NO_x and O_3 due to EPP Annual Averages: Aurora + MEE

Regions without cross-hatching significant at 95% confidence level Xiaohua Fang, HEPPA meeting, October 8, 2009

Change in O₃ and Temp due to EPP Annual Averages: Aurora + MEE

Temperature

Regions without cross-hatching significant at 95% confidence level Xiaohua Fang, HEPPA meeting, October 8, 2009

NO_x change in Feb and Aug: Aurora + MEE

Monthly average ozone depletion of up to 15% at high southern latitudes, 30-35 km

Corresponds to catalytic NO_x destruction

Largest NH Ozone depletion occurs in March from 20-60 km and in Dec near 40 km.

March temperature differences could suggest SSW effects.

Similar behavior in Dec, but low significance & lower altitudes.

Cause/effect not clear.

Summary:

- WACCM captures the indirect effect of energetic particle precipitation.
- WACCM underestimates the EPP-NOx, by about a factor of 2.
- Change in annual averages: NO_X (~20 %), O3 (~5%), T (insignificant).
- Change in monthly averages:
 - O3 (~15%, SH, 30-35 km),
 - T (stratospheric warming, but unclear).

Future studies:

• Zonal average is taken in our current analyses. But this may cause problems, as polar vortex is not symmetric in NH.

- Include time-varying, more realistic particle precipitation.
- Include more types of particle precipitation: auroral protons, SPE, REP.
- Study dynamics in WACCM.

EXTRA SLIDES

Very Large SPEs in 2000, 2001, & 2003

Jackman, COSPAR 2008

From Marsh et al., 2007