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SYNOPSIS

The endothermic chemical reaction models in the polar atmosphere that result in
NOx are adequate to explain depletion of ozone in the polar atmosphere and the
annual and seasonal variation in the nitrates found in polar ice.

Ultra high-resolution analyses (~20 samples per year) of the nitrate concentration
in polar ice finds impulsive transient nitrate depositions that have a one-to-one
association with each of the very large solar proton events in the last century.

Impulsive nitrate deposition events are found in the polar ice within weeks of the
solar cosmic ray event, a result not explained by contemporary transport models.

Contemporary models predict less NOy than is found in these impulsive transient
nitrate deposition events.

The seasonal distribution of these impulsive nitrate events is different from the
expected classical patterns with more events found in the polar ice during the
sunlight season than the polar night season.



Nitrate chemistry in the Polar Atmosphere

Polar summer “daytime” reaction”

NO + O3—NO, + O,

NO, +@—»No +O(’P)

NO, + OH—-*-HNO;

Polar winter “night-time” reaction”

NO; + O3 — NO; + O,
NO3 + NO«—M—N,05 22, 2HNO;
NO;3; + DMS,HC — HNOj3 + products

(Javis et al., GRL, 35, L21804, 2008)

The NO, dissociation energy is ~10 eV.

In addition to the EUV
there are other energy sources to
drive the endothermic reaction.

Solar Flare X-Rays

Auroral Electrons
(80 km)

Galactic Cosmic Rays

Solar Energetic Particles
All levels of the mesophere

A very large solar proton event
with a >30 MeV fluence (10° cm-2)
IS equivalent to a

11-year solar cycle of

cosmic ray flux



ENERGETIC PARTICLES
(AURORAL ELECTRONS AND SOLAR PROTONS)
PROVIDE THE ENERGY TO DRIVE AN

ENDOTHERMIC REACTION

NO + O3 2 NO, + O,
NO, + O 2> NO + O,

Net: O;+0 > 0, + 0,

The result is “odd nitrogen”
(a complex of nitrate radicals designated by the symbol NOX)

Some of the N Ox is transported downward to the troposphere,
then it is precipitated to the surface in ~6 weeks.

Nitrate deposition in polar ice are markers of the NOY precipitation.



The NOy controversy for nitrate enhancement

The classical scenario

e Enhanced electrons in the

polar-night mesosphere produced NO
(it is dissociated by UV if sunlit)

e The NO-rich air descends
via the upper branch of the
Brewer-Dobson circulation

e Encountering O, it reacts to NO,,

e Descent continues to the stratosphere,
and HNO, is formed

e PSCs form, taking the HNO,
to the lowest stratosphere

e The lowest part of the Brewer-Dobson
circulation takes this air to mid-latitudes
where it enters the troposphere
via tropopause folds

The POAM measurements have
validated the Brewer-Dobsen circulation

The impulsive nitrate

deposition scenario

e NOx is generated by solar proton
penetration to low altitudes
e Some is attached to a heavy aerosol
e Gravitational sedimentation
into the polar ice in 4-6 weeks
e Many events during polar sunlight
e 1-to-1 correspondence to every
10° fluence >30 MeV proton event
in the space era
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ICE CORE STATISTICS
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Raw data from the 2004 Greenland core
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DATING ICE CORES
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Nitrate Concentration (pph),
Conductivity x 100 - 50 (pSfcm)

We have dated the 2004 core using the standard snow depth — time
profile derived from the previous GISP ice core records.
An unambiguous time marker is the eruption of the Hekla, Iceland volcano in 1947.

We subdivided each year into months using an interpolation based upon
the average monthly precipitation observed in central Greenland.
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At this Greenland location more precipitation during summer;
nearly a factor of 2 larger than winter months.
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Both Greenland cores and the Antarctic cores
see the same large events where they overlap in time
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Top: Nitrate data from the 2004 Greenland core with annotated solar events. (High resolution)
Bottom: Nitrate deposition data from 1988-1989 Antarctica ice cores. (1.5 cm resolution)



>30 MeV SOLAR PROTON EVENTS
OMNIDIRECTIONAL EVENT FLUENCE
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The > 30 MeV solar proton events since solar sunspot cycle 19
The RED line indicates the NO, detection threshold



Nitrate enhancements in polar ice; proxy of solar proton events
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The ~450-year record of >30 MeV solar proton fluence events.

The black lines are NOy events; red lines are SPEs 1965-2000.
(From McCracken et al., 2001.)
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> 30 MeV Fluence

All proton data summed over each solar cycle
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The > 30 MeV omnidirectional proton fluence for 36 solar cycles.

cycle 10 was dominated by one major event (the Carrington event in 1859)
cycle 13 had 7 major events contributing to the total fluence.

The total fluence for most cycles is within a factor of 2 of the
maximum fluence per cycle measured by spacecraft since 1965.



EVENTS PER YEAR with FLUENCE >F

Very large proton events have
a different distribution F-0°
than the most common events F04
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SUMMARY

Ultra high-resolution analyses (~20 samples per year) of the nitrate
concentration in polar ice finds impulsive transient nitrate depositions
that have a one-to-one association with each of the very large

solar proton events in the last century.

Impulsive nitrate deposition events are found in the polar ice within weeks
of the solar cosmic ray event, a result not explained by contemporary
transport models.

The seasonal distribution of these impulsive nitrate events is different from
the expected classical patterns with more events found in the polar ice
during the sunlight season than the polar night season.

The impulsive nitrate deposition events provide a record of solar activity
for the past 450 years. This provides a record for 36 solar cycles.

The total fluence for most cycles is within a factor of 2 of the
maximum fluence per cycle measured by spacecraft since 1965.






