

The Bremen 3d CTM

- global 3d Chemistry and Transport Model (CTM)
- driven by meteorological data (temperature, pressure, wind fields)
 - UKMO, ECMWF operational, ECMWF ERA INTERIM, ECMWF ERA 40
- horizontal transport along isentropes calculated from analysed wind fields
- vertical transport across isentropes calculated from diabatic heating rates using the MIDRAD radiation scheme
[Shine, 1987]
- transport calculated using the advection scheme of Prather
[Prather, 1986]

The Bremen 3d CTM

- neutral chemistry model
- 57 tracer, families (O_x , NO_x , HO_x , ClO_x , BrO_x)
- ~ 180 gas phase, photochemical, and heterogeneous reactions
- JPL 2006
- ionisation rates from AIMOS model [Wissing et al., 2008]
- parameterised NO_x and HO_x production:
 - 1.25 NO_x (55% NO, 45% N) [Porter et al., 1976]
 - ≤ 2 HO_x [Solomon et al., 1981]

The Bremen 3d CTM

- horizontal resolution
 - 96 longitudes
 - 72 latitudes
 - $3.75^\circ \times 2.5^\circ$
- vertical resolution
 - 28 isentropes
 - 10 - 65 km
 - 1 - 4 km
- timestep
 - transport: 30 min
 - chemistry: 15 min

adapted from Jan Aschmann

- Porter, H., Jackman, C., and Green, A. (1976).
Efficiencies for Production of atomic Nitrogen and Oxygen by relativistic Proton Impact in Air.
Journal of Chemical Physics, 65(1):154–167.
- Prather, M. (1986).
Numerical advection by conservation of second-order moments.
Journal of Geophysical Research, 91(D6):6671–6681.
- Shine, K. (1987).
The middle atmosphere in the absence of dynamical heat fluxes.
Quarterly Journal of the Royal Meteorological Society, 113:603–633.
- Solomon, S., Rusch, D., Gerard, J., Reid, G., and Crutzen, P. (1981).

The Effect of Particle-Precipitation Events on the neutral and Ion Chemistry of the middle Atmosphere .2. Odd Hydrogen.
Planetary and Space Science, 29(8):885–892.

- Wissing, J., Bornebusch, J., and Kallenrode, M. (2008). Variation of energetic particle precipitation with local magnetic time.
Advances in Space Research, 41(8):1274–1278.