

Measurements of Temperature and Nitric Oxide in the Thermosphere from 5.3 μm emission taken by MIPAS on Envisat

M. López-Puertas, D. Bermejo,
B. Funke, M. García-Comas
(IAA, Granada)

Th. Clarmann, G. Stiller,
U. Grabowski, N. Glatthor
(IMK, Karlsruhe)

HEPPA 2009

Contents

- MIPAS instrument
 - ◆ Observations modes, coverage
- Retrieval method
 - ◆ Retrieval quality
- Preliminary results
 - ◆ SPE Jan 2005
 - ◆ NH winter 2009

The MIPAS instrument

- IR limb emission Fourier spectrometer on ENVISAT
- Launched **I** March 2002 on sun-synchronous polar orbit, 98.5°.
- Measures **day and night (polar!), global latitude** coverage
- Spectra in **14.6-4.15 μm (685-2410 cm^{-1})** at **0.035 (0.0625) cm^{-1}** .
- Altitude range **6 to 70 km** (up to 170km)
- 2002-2004: high spectral res., vertical resolution 3 - 6 km
- Since **2005: optimized spectral res.** => better spatial resolution

NO emission at ~123 km

- Rotational
and spin
lines
resolved.

MIPAS Reduced Resolution Modes

This table lists the scan sequences for MIPAS reduced-resolution operations since January 2005. Most of these are defined in [Mission Plan V4.2](#) (July 05) although the "old" UTLS-1 mode was defined in the "Planning of MIPAS Special Modes - January 2005 Campaign" (Jan 05)

Mode:	Nominal	UTLS-1 (old)	UTLS-1 (new)	UTLS-2	MA	UA	NLC	AE
Horiz. Spacing	410km	275km	290km	180km	430km	375km	515km	n/a
Alt. Grid	Float	Float	Float	Fixed	Fixed	Fixed	Fixed	Fixed
Sweeps/Scan	27	18	19	11	29	35	25	12
Scan#1	70	49	49	42	102	172	102	38
Scan#2	66	44	44.5	37	99	167	99	33.5
Scan#3	62	39	40	33	96	162	96	29
Scan#4	58	34	35.5	29	93	157	93	24.5
Scan#5	54	31	31	26	90	152	90	20
Scan#6	50	28	28	23	87	147	87	17
Scan#7	46	26	25	20	84	142	85.5	15
Scan#8	43	24	23	18	81	137	84	13
Scan#9	40	22	21	16	78	132	82.5	11.5
Scan#10	37	20.5	19	14	75	127	81	10
Scan#11	34	19	17.5	12	72	122	79.5	8.5
Scan#12	31	17.5	16		69	117	78	7
Scan#13	29	16	14.5		66	112	75	
Scan#14	27	14.5	13		63	107	72	
Scan#15	25	13	11.5		60	102	69	
Scan#16	23	11.5	10		57	99	66	
Scan#17	21	10	8.5		54	96	63	
Scan#18	19.5	8.5	7		51	93	60	
Scan#19	18		5.5		48	90	57	
Scan#20	16.5				45	87	54	
Scan#21	15				42	84	51	
Scan#22	13.5				39	81	48	
Scan#23	12				36	78	45	
Scan#24	10.5				33	75	42	
Scan#25	9				30	72	39	
Scan#26	7.5				27	69		
Scan#27	6				24	66		
Scan#28					21	63		
Scan#29					18	60		
Scan#30						57		
Scan#31						54		
Scan#32						51		
Scan#33						48		
Scan#34						45		
Scan#35						42		

- UA mode (42-172 km):
 - ◆ @ 3 km steps
 - ◆ 102 to 172 km @ 5-km

UA: Temperature and NO retrieval setup

- Retrieval setup:
 - ◆ Use of “Micro-windows”
 - ★ Fundamental band lines of NO(1-0).
 - ◆ Regularization.
 - ◆ Previous TLOS retrieval up to 100 km (CO₂ 15 μ m).
 - ◆ Non-LTE model accounting for vibrational, rotational and spin non-LTE.
 - ◆ Atomic oxygen from MSIS.

Temperature and NO retrieval setups

	Temperature 15 μm	Temperature Rot. 5.3 μm	NO vmr 1 st step	NO vmr 2 nd step
Tangent heights	40-100 km	90-170 km	90-170 km	40-90 km
Microwindows	685-793 cm^{-1}	1840-1940 cm^{-1}	1840 -1940 cm^{-1}	1840 -1940 cm^{-1}
Non-LTE	Vibrational	Vibrational, rotational, spin	Vibrational, rotational, spin	Vibrational, rotational, spin
Retrieval grid	40-120 km	90-200	90-200	40-100
Regularisation		Tikhonov 1st order	Tikhonov 1st order	Tikhonov 1st order

NO non-LTE spin and rot. temperatures

- MIPAS non-LTE spin and rotational temperatures
- Good agreement with non-LTE model predictions
- Gardner, Funke, López-Puertas et al., JGR, 2007.

Performance of Temp retrieval (22 Dec 06, Ap moderate)

Orbit 25150:

- Noise error: 5-30 K
- Vertical resolution: 5-10 km
- Convergence: 85%

NO vmr retrieval performance (22 Dec 06, Ap moderate)

- Noise error: 5-20 %
- Vertical resolution: 5-10 km
- Convergence: 85%

14 June 2003. Moderate Ap

Temp. Comparison with WACCM. June 03

NO vmr. 22 Dec 2006

Day

NO vmr. Comparison with WACCM. June 03

Solar Storm Jan 2005: Temp. & NO

Solar Storm Jan 2005: Proton fluxes. Kp index

Solar Storm 21 Jan 2005

70°S-50°S

Orbit 15139. TH(D/N): 123.0/122.8 km

17-18h

Solar Storm 21 Jan 2005

70°S-50°S

Orbit 15141. TH(D/N): 123.0/122.7 km

21h. Max. Diff.

Temp. change during SPE

Pre-SPE

Diff.

NO change during SPE

Pre-SPE

SPE

Jan-Mar 2009:
SH: Summer-Winter transition
NH: Strat-warm

Temp. Jan-Apr 2009. SH

**Mesosphere/
Thermosphere
coupling**

SABER Temp. NH Winter 2009

Temp. Jan-Apr 2009. NH

Post-Strat-
warm effects in
thermosphere?

Temp. Jan 2009. NH

Strat-warm
effects in
thermosphere?

Summary/Conclusions

- A retrieval scheme for thermospheric NO and Tk from MIPAS spectra at 5.3 μm has been developed.
- MIPAS provides global lat. coverage, Day & Night for Tk and NO in the thermosphere (105-170 km), 1/10 days.
- Temperature: Noise error: 5-30 K; Vertical res.: 5-10 km
- Nitric Oxide: Noise error: 5-20%; Vertical res: 5-10 km
- SPE Jan 2005 increase Tk in 150 K and NO in 400 ppmv
- Apparent Mesosphere/Thermosphere coupling observed
- Strat-warm effects possibly seen in the thermosphere?

Thank you!