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ABSTRACT

We assess the contribution of solar forcing from the interplanetary magnetic
field (IMF) |B| and solar wind velocity (Vsw) on the auroral inputs from
intercalibrated NOAA and DMSP satellite-track in-situ particle measurements.
Periodicities in Vsw and the global electron (Pe) and ion power (Pi) are
calculated using Lomb-Scargle (L-S) and wavelet analyses. We examine two
different solar minimum periods in a broader context, including radiation belt
electrons >2 MeV. The first Whole Sun Month (WSM) interval (96223-96252)
had a strong solar magnetic dipole. Strong 'semiannual’ equinoctial
periodicities of ~20% variation in Vsw and 40% variation in Pe were found. In
the present solar minimum, the solar magnetic field is weaker with larger
guadrupole components during the Whole Heliospheric Interval (WHI, 08080-
08107). Strong 9-d amplitudes of ~30% variation in Vsw and ~40% variation in
Pe and Pi were found. This 9-d periodicity was also found in the IMF |B|, in the
CHAMP neutral density at 400 km, and in the outer radiation belt electrons >2
MeV. Solar periodicities are also examined using the available parameters
during previous solar minima in 1985-1986 and in 1975-1976.



Estimates of the electron hemispheric power
(HPe) into the auroral regions from particle
detectors on NOAA and DMSP satellites were

inter-calibrated over 31 years and 24 satellites.
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The electron hemispheric power (HPe) Is found In
both hemispheres on an hourly basis. The sum of
the Northern and Southern hemispheres is the
auroral electron power (Pe).
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The ion hemispheric power (HPI) Is found from 5
NOAA SEM-2 satellites as HPiI=Hpt-Hpe (<20keV)
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Contributions of Solar Wind Structures to
Auroral Power



Average hourly Vsw attributed to solar
wind structure as 27-day averages
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Average hourly IMF attributed to solar
wind structure as 27-day averages
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Average hourly Pe attributed to solar
wind structure as 27-day averages

27-Day Averages of Hourly Average Values
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Auroral Electron Power (GW)
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Correlation of Pe with Vsw|Bj|

Daily Averages 1978-2008
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Vsw|B| (mV/m) for Bz>=0

Transient fit higher than HSS+slow for Bz<0, lower for Bz>0, so
an increase in |B| (or Bz) is more,less effective for Bz<0,>0.



Solar Rotational Periodicities in the
total Vsw, Pe, and PI

Amplitude of Periodicities
100F ¢ Vsw o Pe: xPi*10  =- 1 year hourly Lomb-Scargle . 415
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Two Solar Minimum Comparisons



1996 WSM and 2008 WHI Minima
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SOHO/EIT images (a-d) show coronal holes as dark regions in extreme-ultraviolet
emission. Radiation belt electrons >2 MeV (i-j) initially decrease with pressure pulses
at the leading edges of HSS, and then are high until the next leading edge pressure
pulse. [Gibson et al., JGR, 2009]



WSM and WHI in Context

WSM WHI
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1996

Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to
the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind
density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw
except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt
electrons in (d) increases, possibly because of lower loss rates (Dsw less).



Magnetic field (-15%) & Solar wind speed (+8%)
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Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to
the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind
density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw
except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt
electrons in (d) increases, possibly because of lower loss rates (Dsw less).



Solar wind density (-35%) & Solar wind speed (+8%)

b) Solar wind density vs. solar wind speed
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Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to
the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind
density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw
except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt
electrons in (d) increases, possibly because of lower loss rates (Dsw less).



& Solar wind speed (+8%)

c) Auroral electron power vs. solar wind speed
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Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to
the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind
density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw
except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt
electrons in (d) increases, possibly because of lower loss rates (Dsw less).



Radiation belt (x3.4) & Solar wind speed (+8%)

d) > 2MeV Radiation belt electron flux vs. wind speed
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Vsw in dark blue shows an increase of ~8% from WSM to WHI. The sunspot cycle is similar to
the solar wind B field in (a), and decreases ~15% between WSM and WHI. The solar wind
density (Dsw) in (b) shows a stronger decrease of ~35%. Pe in (c) is nearly coincident with Vsw
except it decreases ~5% from WSM to WHI because of the decrease in B. The radiation belt
electrons in (d) increases, possibly because of lower loss rates (Dsw less).
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Solar Minima are Similar

* Whole Sun Month (96223-96252)
— Monthly SS#=0.9
— 4% CME, 47% HSS, 49% slow speed wind
— Pe ~23.3 GW

* Whole Heliospheric Interval (08080-08107)
— monthly SS#=0.5

— 4% CME, 46% HSS, 50% slow speed wind
— Pe ~22.1 GW (-5%)



Solar Minima are Different

« SC 22-23
— Strong dipole solar magnetic field
— Big Coronal Holes, weak low-latitude extensions
— Vsw periodicities: 27, 13, 9-d ~45, 21, 16 km/s
— IMF B ~4.7nT; Vsw ~415 km/s; Dsw ~8 #/cm?
— Outer radiation belt depressed in magnitude

« SC 23-24

— Weaker dipolar solar magnetic field (-35% polar magnetic
flux)

— Small Coronal Holes, large low-latitude extensions

— Vsw bimodal with periodicities: 27, 13, 9-d ~51, 45 (x2),
48 (x3) km/s

— IMF B ~4.0nT (-15%); Vsw ~448 km/s (+8%); Dsw ~5
#/cm3(-35%)

— Outer radiation belt pumped up (~3.4x, +75% loQ)



Solar Forcing

Transients contribute ~40% and ~6% to Pe in solar maximum and minimum,
respectively. Transients represent the largest |B| values, and are more
effective in producing Pe during Bz negative conditions, and less effective in
producing Pe during Bz positive conditions than HSS and slow-speed wind.

HSS contribute ~57% and ~32% to Pe In descending and solar maximum
phases. HSS determine the structure of the total Vsw or Pe, and contribute
the most to periodicities.

Solar minima in 1996 and 2008 are different in solar magnetic fields, coronal
hole distributions, Vsw distributions and periodicities, and solar wind
densities which lead to profound effects in the Earth’s radiation belts, aurora,
magnetic activity, and upper atmosphere.

The ‘semi-annual’ amplitudes from Lomb analyses were large ~1995-1999
for Vsw and Pe. In ~1996 (WSM), the Vsw ‘sa’ periods peaked in the
equinoxes, enhancing the ‘normal’ equinoctial peaks in Pe from Russell-
McPherron mechanisms, etc. The semi-annual amplitudes were absent or
weak ~2002-2008 (WHI).

The 9-day periodicities in Vsw (especially in HSS), Pe and Pi seen after
2003 were strong in 2005 and 2008 (WHI), and were absent or weak ~1997-
2002 (WSM). They are also present in Kp, the neutral thermosphere density
in WHI, TEC (Lei et al., GRL, 2008), and infrared [NO] and [CO2] cooling
(Mlynczak et al., GRL, 2008), and are absent or weak in SEE flux, and 10.7
cm solar flux (Lei et al., JGR, 2008) . 9-day periods also in 1976 and 1983.
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