

Sources of Energetic Particles and Their Impact on the Upper Atmosphere

Gang Lu and Ray Roble High Altitude Observatory, NCAR

Dave Evans Space Weather Prediction Center, NOAA

Charles Jackman NASA Goddard Space Flinght Center

Xiaohua Fang LASP, University of Colorado

Acknowledgments: Art Richmond, Hanli Liu, and Ben Foster

HEPPA Workshop, October 6-8, 2009, Boulder, Colorado

Outline

□ Brief Overview of the TIME-GCM

Sources, Distributions, and Impact of Energetic Particles

Investigation of the Spring 2004 "Anomaly"

Summary

Solar Energetic Protons Observed by NOAA-POES

00 UT, 28 October 2003

06 UT, 29 October 2003

Energetic Particles Observed by POES/MEPED

21 UT, 28 October 2003

Energetic Particles Observed by POES/MEPED

21 UT, 29 October 2003

Distributions at 21UT on 29 Oct. 2003 - North

Distributions at 21UT on 29 Oct. 2003 - South

Ionization Rate at 21UT on 29 Oct 2003

Ionization Rate at 21UT on 29 Oct 2003

Relative Effects on the Ionosphere at 02 LT, 21UT on 29 Oct 2003

GOMOS NO₂ production by relativistic electrons

[Clilverd et al., 2008]

Comparison of GOMOS & TIME-GCM NO₂ Produced by Energetic Electrons

TIME-GCM NO₂ with MEPED electrons

TIME-GCM NO₂ without MEPED electrons

Summary

- Energetic particles of various solar and magnetospheric sources have drastically different characteristics, and an accurate specification of EPP is of critical importance to upper atmospheric modeling
- Since the Altitude where energetic particles dissipate depends strongly on the characteristic energy, energetic particles of different origins can have different effects on the upper atmosphere
- Using realistic specification of energetic particle inputs, the TIME-GCM is able to replicate qualitatively the observed Spring 2004 "Anomaly" associated with the ring current energetic electrons

Distributions at 18UT on Feb. 15, 2004

Electrons Energy Flux

Electrons Mean Energy

Observed NO₂ mixing ratio (in ppbv)

[Randall et al., 2005]

NO₂ production with SEP+MEPED electrons

NO₂ without MEPED electrons

Chemical and Dynamical Processes in the TIME-GCM

Percent Changes due to Energetic Electrons

September 11-13, 2005

Difference Plots from (Jackman - BION)

% Change of Electron Density due to SEP

