Direct Effects of EPP on the Middle and Lower Atmosphere (8 oral, 7 poster, also Model/Measurement Workshop)

HEPPA Workshop Boulder, CO Oct. 6-8, 2009

Summary of topics covered

- Particle input
 - Medium and high energy electrons (EISCAT measurements)
 - Use MLS OH measurements for:
 - Electron flux (200-300 keV)
 - Proton flux (>10 MeV)
- Energy deposition (Ion rate) computation
- Particle production of H, OH, HNO₂, HNO₃
- New observations
 - Temperature, NO, OH, etc. from OSIRIS
 - H₂O₂, BrONO₂ from MIPAS

Summary of topics covered

- Modeling studies
 - HCl decrease during SPEs (HALOE)
 - Mesospheric Ozone response 2004-5 (GOMOS)
 - Proton & electron (together) impact on constituents (Ozone & HNO₃, MIPAS)
 - Electron impact (Ozone & NOx, MIPAS)
 - Extremely large SPE (Carrington event) influence

What are the outstanding issues?

- Medium and high energy electron impact
- Energy deposition computation
 - Intercomparison needed?
- Model predictions of HNO₃ too low
 - Ion chemistry, look-up table production needed (also, include NOx loss)?
- Incorrect model predictions of N₂O₅, ClONO₂, ClO....
 [HOCl reasonable?]
- Realistic transport (winds, waves, diffusion) in models

Medium and high energy electrons Precipitating fluxes Temporal distribution Spatial distribution

From HEPPA-1 Outstanding Issues May 2008

EPP-caused temperature effect – SABER Increase, decrease Altitude dependence Changes in dynamics (e.g., radar winds)

EPP-caused constituent changes
HNO3 – model-measurement differences
N2O5
CO
HCI
N2O, H2O, CIONO2
HOx (esp. wrt HNO3 and diurnal variations)

Other

South Atlantic Anomaly
Ozone changes (Arctic) in lower stratosphere
Surface temperature signature from EPP
Transport