Statistical comparison of particle precipitation fluxes and the D-region electron density profiles

Antti Kero¹, Carl-Fredrik Enell¹, Juha Vierinen¹, Björn Gustavsson², Paul Gallop³

antti.kero@sgo.fi

Sodankylä Geophysical Observatory / University of Oulu, Finland, www.sgo.fi
University of Tromso
EISCAT, www.eiscat.se

Sodankylä Ion Chemistry model (SIC)

Detailed 1-D time dependend chemistry

- 63 ions (27 negative) & 13 neutrals
- 20-150 km in 1 km resolution
- several hundred reactions
- vertical transport

Input

- MSIS
- solar EM flux
- proton and electron precipitation
- cosmic rays

Background Ne (solar EM radiation only) for the EISCAT site at 69.6N, 19.2E

2

Preconditioning the SIC model

POES footpoint above EISCAT VHF [+/- 2°]

Medium Energy Proton and Electron Detector (MEPED)

Electrons (0° and 90°)

- 30 1100 keV
- 100 1100 keV
- 300 1100 keV

Protons (0° and 90°)

- 30 80 keV
- 80 250 keV
- 250 800 keV
- 800 2500 keV
- 2500 6900 keV
- > 6900 keV

Ionisation profiles

Ionisation profiles

Overview of the datasets (N=90)

Production rate vs. electron density

Production rate vs. electron density

Production rate vs. electron density

9

Conclusions

 Electron densities measured by the VHF correlate with MEPED electron fluxes at 80-90km

• Below and above the correlation is poor or absent. This can be caused by uncertainties in the spatial and temporal match of the two datasets + general uncertainties of the data.

Next steps ...

- Reanalysis of the POES and EISCAT datasets
- Inversion of precipitation parameters from the electron density behavior
- More satellites: DMSP, DEMETER etc.

In contrast: SZA vs. Ne

