All you should know about riometers

Martin Friedrich

Graz University of Technology Graz, Austria*)

*)true

*)false

RIO-meter

= Relative Ionospheric Opacity meter

(aka: absorption method A2)

2nd HEPPA Conference, Boulder, October 6th, 2009

fundamental for radio engineering

TU Graz

(wo)man-made: - discrete frequencies

- harmonics of 50/60 Hz (fall off with frequency)

natural:

various extraterrestrial sources in the sky

preferred frequencies:

- too low: can not penetrate *F*-region peak
 - too high: not sensitive
 - e.g. 38.2 MHz internationally reserved

^{2&}lt;sup>nd</sup> HEPPA Conference, Boulder, October 6th, 2009

looking to the celestial north pole

sky noise temperature (in 1000 K) measured at 30 MHz in different co-ordinate systems (Cane, 1978)

noise source maps

n -4 12 18 24 6 Π Sidereal Time (hr)

Sky noise between the equator and the north pole. Sidereal midnight at the top.

Received power at 70°N over a sidereal day (power - theoretically - constant when pointed to pole star)

theoretical QDC (1)

Red circles represent antenna opening angles between ± 5 to $\pm 30^{\circ}$

Received power at 70°N over a sidereal day for different antenna opening angles

2nd HEPPA Conference, Boulder, October 6th, 2009

theoretical QDC (2)

Antenna opening angle from diurnal power ratio (for 70°N)

Received power is a function of:

geographic latitude
sidereal time
antenna opening angle
look direction

$$k_{L} = \frac{1}{\mu} \frac{e^{2}}{2\varepsilon_{o}mc} \frac{N_{e}v}{(\omega \pm \omega_{c})^{2} + v^{2}}$$

(absorption per unit path element; quasi-longitudinal propagation, "classical" theory)

in other words:

there are two modes (x-mode a little more absorbed)

▶ absorption is $\sim N_e \times v$

► absorption is ~ f^2 (for $\omega >> \omega_c$ and $\omega >> v$)

since $v \sim p \Rightarrow$ **absorption** is $\sim N_e \times p$

ionospheric absorption

$$L_i = const. \int_{x=0}^{\infty} N_e p \, dx$$

const. = function of:

- ▶ frequency,
- magnetic field,
- propagation direction.

Large absorption events tend to originate in the lower ionosphere (notably PCA's due to protons)

2nd HEPPA Conference, Boulder, October 6th, 2009

typical absorption profiles

2nd HEPPA Conference, Boulder, October 6th, 2009

real raw data

what is L_0 ?

note:

leven the "normal" (quiet) ionosphere absorbs (L_0)

▶ a riometer measures *additional* absorption (L_R)

▶ absorption calculated from measured N_e is integral absorption (L_i)

$$L_R = L_i - L_Q$$

three ways to obtain L_0 :

(1)
$$QDC_{winter} - QDC_{summer} = L_Q(\chi)$$

(2)
$$L_i$$
(calculated) - L_R (measured) = L_Q

(3) determine True Quiet N_e from envelop of all N_e and calculate L_Q

how to arrive at
$$L_Q$$
?

Winter-Summer difference *vs*. solar zenith angle χ

- requires extremely stable riometer
- \blacktriangleright can still not determine L_Q at night

subtract measured L_R from calculated L_i
 only few cases with sufficient height coverage!
 huge scatter!

$$L_{Q}(2)$$

The Ponnsylvania State University April 10, 2008

AFINE

Nittanysat (2)

• check the QDC (at night when L_{b} ; negligible)

let check the QDC (during the a v using established L_0)

for vertical *and* obly us beams (\Rightarrow imaging riometers)

lestablish L_O d'aring the day (when L_O can be appreciable)

provide Action density estimates based on empirical model

Nittanysat (4)

the receiving antenna generally does not point to the grave station \blacktriangleright stabilise the satellite by magnet (always along the Larth's *B*-field) gravity gradient stabilisation ("bottom" a way points earthward) residual antenna misalignement emulates Sorption feed all receivers from the same antenna (same "pseudo" absorption) be the polarisation can have any or en ation at the satellite (Faraday rotation) transmit circularly plarised waves *the satellite has a velocity component in propagaton direction (Doppler)* transmit t inf satellite with the expected frequency offset sveer frequency enough to safely cover any Doppler shift iden 'ify Doppler shift and adjust ground transmitters in real-time

Nittanysat (5)

transmitters for each frequency and location (with or with $\ge \geq 100$ W, but switch off regularly to check backg ound power switch to low power for linearity check of receivers track the expected Doppler shift crossed dipoles for each frequency, hased for x-mode choose frequency high enough to a ways penetrate the ionosphere > max. 70° off zenith (most pb) que beam of an imaging riometer) ► for $f_0F_2 = 10$ MHz at 300 km \Rightarrow 22.6 MHz choose frequencies love rough to be more sensitive than the riometer ► e.g. 10 MFz \sim (CS.2/10)² = 16.6 more sensitive than IRIS telemetry and elecanmand ▶ for ach location for real-time download, or ▶ at Penn State only.

Nittanysat (6)

receivers for each frequency

- narrow band (to cover Doppler shin would unduly increase the noise)
- sensitivity 1 to 10 μ V full scale
- > one (electrically short) artel na for all receivers

some mechanism to activate receivers when within reach of ground station

- coded signal on the higher frequency
- activated from internal memory, or
- leave then on all the time.

Realistically L_Q can only be determined by simulation using TQ- N_e

absorption L_Q is a function of: - solar zenith angle χ - solar activity

Approximation of L_Q by $L_o(\cos \chi)^n$; at night $L_Q = L_n$

	Low solar activity (67 Jy)	High solar activity (200 Jy)
L_o , dB	0.140	0.191
n	0.570	0.546
L_n , dB	0.012	0.012

Table of annual means (27.6 MHz, x-mode)

IRIS imaging riometer at Kilpisjärvi, Finland (69.1°N, 20.8°E)

- 64 antennas
- circulary polarised (x-mode)
- forming 49 beams
- central (vertical) beam $\pm 5.6^{\circ}$
- most oblique beam (69° off) $\pm 6.2^{\circ}$
- beam # 50: single antenna (wide beam)

2nd HEPPA Conference, Boulder, October 6th, 2009

more is better

Why does the wide beam consistently "see" more absorption?

2nd HEPPA Conference, Boulder, October 6th, 2009

wide vs. narrow beam (1)

calculation for a $\pm 30^{\circ}$ antenna, absorption at 90 km ... because contributions from the side have a longer path through the absorbing ionosphere.

wide vs. narrow beam (2)

calculation for a $\pm 30^{\circ}$ antenna, absorption at 90 km

2nd HEPPA Conference, Boulder, October 6th, 2009

 additional absorption (<20 %) due to oblique noise contributions
 reduced effective opening angle for large absorption (collimation)

wide vs. narrow beam (3)

2nd HEPPA Conference, Boulder, October 6th, 2009

wide vs. narrow beam (4)

► $L_R = 0.1$ dB is significant at night (*i.e.*, 93· L_i , vs. only 1.8· L_i during the day)

day & night

 \blacktriangleright L_R not significant in the *E*-region (during the day)

median results of the empirical model IMAZ (McKinnell and Friedrich, 2007) $K_p = 3, \chi = 60^\circ, 100^\circ, \text{ local noon / mid-night, mid April}$

can L_R be replaced by K_p ?

Graz

- \Rightarrow for quantitative or synoptic studies (involving different riometers) check:
 - \Rightarrow the operating frequencies
 - \Rightarrow the opening angles
 - \Rightarrow the mode (o-, x-, or both)
- \Rightarrow can riometer absorption be replaced by a geomagnetic disturbance index?
 - \Rightarrow definitely not
- \Rightarrow does, *e.g.*, 0.1 dB mean a significantly different electron density?
 - \Rightarrow yes at night, but not during the day
- \Rightarrow can, say, 0.1 dB be measured?
 - \Rightarrow it can be resolved, but not (reliably) measured (QDC!)
- \Rightarrow is L_R a clue to the shape of the profile?
 - \Rightarrow to some extent: larger L_R generally mean N_e bulges at lower altitudes

Harrich, M:

Empirical Modelling of Electron Densities in the High Latitude Mesosphere, PhD Thesis, Graz University of Technology, 2001.

Egger, G.:

Empirical Model of the Polar Cap Ionosphere, MSc Thesis, Graz University of Technology, 2004.

Steiner, R.J.:

Novel Procedures for Modelling the High-Latitude Ionosphere, PhD Thesis, Technical University Graz, 2003.

references

Cain, H.V.:

- A 30 MHz Map of the Whole Sky, *Austr. J. Phys.* **31**, pp. 562- 565, 1978.
- Friedrich, M., M. Harrich, R.J. Steiner, K.M. Torkar, and F.-J. Lübken: The Quiet Auroral Ionosphere and its Neutral Background, *Adv. Space Res.* 33 (6), pp. 943-948, 2004.
- Friedrich, M., M. Harrich, K.M. Torkar, and P. Stauning: Quantitative Measurements with Wide-Beam Riometers, *J. atmos. solar terr. Phys.* 64, pp. 359-365, 2002.
- Harrich, M., M. Friedrich, S.R. Marple, and K.M. Torkar: The Background Absorption at High Latitudes, *Adv. Radio Sci.* **1**, pp. 325-327, 2003.
- McKinnell, L.A. and M. Friedrich: A Neural Network Based Ionospheric Model for the Auroral Zone, J. atmos. Solar terr. Phys. 69, pp. 1459-1470, 2007.
- Schwentek, H. and E.H. Gruschwitz: Measurement of Absorption in the Ionosphere on 27.6 MHz at 52°N by Means of a Riometer and a Corner Reflector Antenna Directed to the Pole Star, *J. atmos. terr. Phys.* 32, pp. 1385-1402, 1970.
- Bilén, S., R.C. Philbrick, A. Escobar, B. Schratz, E. Thrane, M. Gausa, K. Dahle, F. Honary, S. Marple, R. Smith, M. Friedrich, T. Zilaji: Nittanysat – A Student Satellite Mission for *D*-Region Study and Calibration of Riometers, ESA-SP 18, pp. 407-412, 2007.