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What “Precipitation” Affects the Thermosphere/Ionosphere
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Primarily auroral electrons in the energy range 100 eV  – 100 keV
...also protons and other ions in the energy range 1 keV – 1 MeV

Radiation belt particles, Solar energetic particles, cosmic rays, etc., are of little 
importance above ~90 km, because they pass right through the thermosphere.

“I got no kick against the east coast; you know the people there have got the most; and New York City’s like 
a friendly ghost, you seem to pass right through...” — Bob Segar, Katmandu. 



Outline of Presentation
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• Simple tutorial on auroral energy deposition and thermosphere/ionosphere effects

• Introduction to the odd-nitrogen problem and the sources of nitric oxide

• Integrated auroral power and the magnitude of the chemical response

...not going to talk about:

— electrodynamical coupling and Joule heating

— disruption of the ionospheric electric field

— response of thermospheric temperature, density, and wind
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Reconnection in the Magnetotail
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Coupled Magnetosphere-Ionosphere-Thermosphere Model
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Energetic Particles from the Magnetosphere
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Motion of Charged Particles Along a Magnetic Field Line
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Transport of Auroral Electrons in the Upper Atmosphere
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Penetration Depth of Auroral Electrons Depends on Energy
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Thermosphere and Ionosphere Composition
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Auroral Collisional Processes

Electron Impact Ionization
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Ion Recombination Processes
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Examples of Auroral Emission Processes

Molecular Nitrogen:

e* + N2 → 2e* + N2
+(B2Σu

+)         N2
+(B2Σu

+) → N2
+(X1Σg

+) + hν (1N bands)

e* + N2 → e* + N2(B3Πg)              N2(B3Πg) → N2(X1Σg
+) + hν (1P bands)

e* + N2 → e* + N2(A3Σu
+)             N2 (A3Σu

+) → N2(X1Σg
+) + hν                      (VK bands)

N2 (A3Σu
+) + O(3P) → N2(X1Σg

+) + O(1S)

O(1S) → O(3P) + hν (5577Å)
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Examples of Auroral Emission Processes

Atomic Oxygen:

e* + N2 → e* + N2(A3Σu
+)       N2 (A3Σu

+) + O(3P) → N2(X1Σg
+) + O(1S)

O(1S) → O(3P) + hν (5577Å) τ~1s

e* + O(3P) → e* + O(1S)        O(1S) → O(3P) + hν (5577Å) τ~1s

e* + O(3P) → e* + O(1D)        O(1D) → O(3P) + hν (6300Å) τ~100s

O2
+ + e- → O + O(1D)            O(1D) → O(3P) + hν (6300Å) τ~100s

O(1D) + N2 → O(3P) + N2
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Examples of Auroral Emission Processes

Atomic Nitrogen:

e* + N2 → e* + N(4S) + N(2D)             N(2D) → N(4S) + hν (5200Å) τ~100,000s

N(2D) + O → N(4S) + O

NO+ + e- → O + N(2D)                        N(2D) → N(4S) + hν                     (5200Å) τ~100,000s

N(2D) + O → N(4S) + O 
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Simplified Schematic of Ion-Neutral Chemistry

Ionization leads inexorably to dissociation



Simplified Schematic of E-region Ion-Neutral Chemistry
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Simplified Schematic of Odd-Nitrogen Chemistry
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Measurements of Nitric Oxide by SNOE

Thermospheric NO Peak Density at 107 km, Day 1998 070

SNOE measured thermospheric nitric oxide using γ-band fluorescence method.
Measurement constrained to sunlit locations (i.e., can’t measure at winter pole)

Altitude range 90–170 km; best quality data in range 100–150 km
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Measurements of Nitric Oxide by SNOE
Daily mean data at ~11 AM local solar time (15 orbits) averaged over all longitudes
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Comparison of SNOE NO to TIE-GCM 1.8 Calculations
SNOE TIE-GCM

Equinox

Solstice
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Comparison of SNOE NO to TIE-GCM 1.8 Calculations
SNOE TIE-GCM

Low
Aurora

High
Aurora
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The 80’s View — Linear Fit to NOAA/DMSP Particle Data
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...But More Recent NOAA/DMSP HP Estimates are Higher
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Fit to Current HP Estimates is Approximately 2 x Maeda
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Comparison to HP Integrated over the “Hardy Oval”
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Auroral Measurements by the TIMED
Global Ultraviolet Imager (GUVI) 
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GUVI Empirical Auroral Oval
(ongoing work by Yongliang Zhang, Wenbin Wang, Xiaoli Luan)
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Comparison to New Estimates from TIMED/GUVI
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Morphology of Some Empirical Auroral Ovals
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Nitric Oxide in NCAR General Circulation Models
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Where we are:

— Believe that we have a realistic representation of auroral distribution and HP
...also now parameterized using solar wind / IMF input

— But TIE-GCM v. 1.93 still doesn’t produce quite enough nitric oxide
...especially during high auroral activity

— Still get reasonable agreement with SNOE general morphology
...including latitudinal, seasonal, and solar cycle dependence

— Also get good agreement with SABER cooling rate observations
...see talk by Mlynczak et al., later this afternoon.
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