Particle "Precipitation" in the Thermosphere / lonosphere

Stan Solomon

High Altitude Observatory National Center for Atmospheric Research

NCAR

What "Precipitation" Affects the Thermosphere/Ionosphere

pre•cip•i•ta•tion lpri,sipə'tā sн ənl

noun

- 1 Chemistry the action or process of precipitating a substance from a solution.
- 2 rain, snow, sleet, or hail that falls to the ground.
- 3 archaic the fact or quality of acting suddenly and rashly : Cora was already regretting her precipitation.

ORIGIN late Middle English (denoting the action of falling or throwing down): from Latin *praecipitatio(n-)*, from *praecipitare 'throw down or headlong'* (see **PRECIPITATE**).

Primarily auroral electrons in the energy range 100 eV – 100 keValso protons and other ions in the energy range 1 keV – 1 MeV

Radiation belt particles, Solar energetic particles, cosmic rays, etc., are of little importance above ~90 km, because they pass right through the thermosphere.

[&]quot;I got no kick against the east coast; you know the people there have got the most; and New York City's like a friendly ghost, you seem to pass right through..." — Bob Segar, Katmandu.

Outline of Presentation

- Simple tutorial on auroral energy deposition and thermosphere/ionosphere effects
- Introduction to the odd-nitrogen problem and the sources of nitric oxide
- Integrated auroral power and the magnitude of the chemical response

...not going to talk about:

- electrodynamical coupling and Joule heating
- disruption of the ionospheric electric field
- response of thermospheric temperature, density, and wind

Reconnection in the Magnetotail

Coupled Magnetosphere-Ionosphere-Thermosphere Model

Energetic Particles from the Magnetosphere

Motion of Charged Particles Along a Magnetic Field Line

Transport of Auroral Electrons in the Upper Atmosphere

Penetration Depth of Auroral Electrons Depends on Energy

Auroral Collisional Processes

Ion Recombination Processes

Examples of Auroral Emission Processes

Molecular Nitrogen:

$$e^* + N_2 \rightarrow 2e^* + N_2^+ (B^2 \Sigma_u^+) \qquad N_2^+ (B^2 \Sigma_u^+) \rightarrow N_2^+ (X^1 \Sigma_g^+) + h\nu$$
 (1N bands)

$$N_2(B^3\Pi_g) \rightarrow N_2(X^1\Sigma_g^+) + h\nu \qquad (1P \text{ bands})$$

$$e^* + N_2 \rightarrow e^* + N_2(A^3\Sigma_u^+)$$

 $e^* + N_2 \rightarrow e^* + N_2(B^3\Pi_g)$

$$\begin{split} \mathsf{N}_2 \left(\mathsf{A}^3 \Sigma_u^{+}\right) &\to \mathsf{N}_2 (\mathsf{X}^1 \Sigma_g^{+}) + \mathsf{h}\nu \qquad (\mathsf{VK} \text{ bands}) \\ \mathsf{N}_2 \left(\mathsf{A}^3 \Sigma_u^{+}\right) + \mathsf{O}(^3\mathsf{P}) &\to \mathsf{N}_2 (\mathsf{X}^1 \Sigma_g^{+}) + \mathsf{O}(^1\mathsf{S}) \\ &\quad \mathsf{O}(^1\mathsf{S}) \to \mathsf{O}(^3\mathsf{P}) + \mathsf{h}\nu \quad (5577 \text{\AA}) \end{split}$$

Examples of Auroral Emission Processes

Atomic Oxygen:

$$\begin{split} e^* + N_2 &\to e^* + N_2(A^3\Sigma_u^{+}) \qquad N_2(A^3\Sigma_u^{+}) + O(^3P) \to N_2(X^1\Sigma_g^{+}) + O(^1S) \\ & O(^1S) \to O(^3P) + h\nu \quad (5577\text{\AA})_{\tau \sim 1s} \end{split}$$

$$e^* + O({}^{3}P) \rightarrow e^* + O({}^{1}S) \qquad O({}^{1}S) \rightarrow O({}^{3}P) + hv$$
 (5577Å) _{$\tau \sim 1s$}

$$\begin{array}{ll} e^{*} + O(^{3}P) \rightarrow e^{*} + O(^{1}D) & O(^{1}D) \rightarrow O(^{3}P) + h\nu & (6300\text{\AA})_{\tau \sim 100s} \\ O_{2}^{+} + e^{-} \rightarrow O + O(^{1}D) & O(^{1}D) \rightarrow O(^{3}P) + h\nu & (6300\text{\AA})_{\tau \sim 100s} \\ & O(^{1}D) + N_{2} \rightarrow O(^{3}P) + N_{2} \end{array}$$

Examples of Auroral Emission Processes

Atomic Nitrogen:

$$\begin{array}{ll} e^{*} + N_{2} \rightarrow e^{*} + N(^{4}S) + N(^{2}D) & N(^{2}D) \rightarrow N(^{4}S) + h\nu & (5200 \text{\AA})_{\tau \sim 100,000s} \\ & N(^{2}D) + O \rightarrow N(^{4}S) + O \end{array}$$

 $NO^+ + e^- \rightarrow O + N(^2D)$

$$N(^{2}D) \rightarrow N(^{4}S) + hv$$

 $N(^{2}D) + O \rightarrow N(^{4}S) + O$

(5200Å) _{τ~100,000s}

Simplified Schematic of Ion-Neutral Chemistry

Ionization leads inexorably to dissociation

Simplified Schematic of E-region Ion-Neutral Chemistry

Simplified Schematic of Odd-Nitrogen Chemistry

Measurements of Nitric Oxide by SNOE

SNOE measured thermospheric nitric oxide using γ-band fluorescence method. Measurement constrained to sunlit locations (i.e., can't measure at winter pole) Altitude range 90–170 km; best quality data in range 100–150 km

Thermospheric NO Peak Density at 107 km, Day 1998 070

Measurements of Nitric Oxide by SNOE

Comparison of SNOE NO to TIE-GCM 1.8 Calculations

Comparison of SNOE NO to TIE-GCM 1.8 Calculations

The 80's View — Linear Fit to NOAA/DMSP Particle Data

...But More Recent NOAA/DMSP HP Estimates are Higher

Fit to Current HP Estimates is Approximately 2 x Maeda

Comparison to HP Integrated over the "Hardy Oval"

Auroral Measurements by the TIMED Global Ultraviolet Imager (GUVI)

GUVI Empirical Auroral Oval (ongoing work by Yongliang Zhang, Wenbin Wang, Xiaoli Luan)

Comparison to New Estimates from TIMED/GUVI

Morphology of Some Empirical Auroral Ovals

Nitric Oxide in NCAR General Circulation Models

Where we are:

- Believe that we have a realistic representation of auroral distribution and HP
 ...also now parameterized using solar wind / IMF input
- But TIE-GCM v. 1.93 still doesn't produce quite enough nitric oxide ...especially during high auroral activity
- Still get reasonable agreement with SNOE general morphology ...including latitudinal, seasonal, and solar cycle dependence
- Also get good agreement with SABER cooling rate observations
 ...see talk by Mlynczak et al., later this afternoon.

