# Oxidation Chemistry and Evolving Volatility of Organic Aerosol

Neil M. Donahue

Carnegie Mellon University Center for Atmospheric Particle Studies

US - Nordic Workshop on Secondary Organic Aerosols 2 Jul 2007 Hyytiällä, Finland

#### **The Center for Atmospheric Particle Studies**



# **Organic Aerosol**



# **Organic Aerosol**



# **Secondary - Primary Split in Models**



Most of the world mostly POA

[Kanakidou et al. ACP 2005]

# **Aerosol Mass Spectrometer Data**



Ambient organic aerosol *in AMS* resolve into 2 factors (these from Pittsburgh).
HOA looks like diesel and has little oxygen.
OOA looks highly oxidized.

# **AMS Global Observations**



Most of the world 33 - 67% OA

[Qi Zhang et al. GRL 2007]

# **AMS OOA**

![](_page_7_Figure_1.jpeg)

Cities mixed, more than 50% OA Remote sites almost all OOA

[Qi Zhang et al. GRL 2007]

OK, so what is OOA?? ... HOA is convincingly POA, so ...

# **Organic Emissions Processing**

![](_page_8_Figure_1.jpeg)

#### **Vapor Pressure**

# **Continued Processing**

![](_page_9_Figure_1.jpeg)

#### **Vapor Pressure**

# **How Far Does it Go??**

![](_page_10_Figure_1.jpeg)

#### **Vapor Pressure**

#### **Production of a Semi-Volatile Compound**

![](_page_11_Figure_1.jpeg)

#### **Semi-Volatile Mass Fraction**

![](_page_12_Figure_1.jpeg)

### **Partitioning of Single Component**

![](_page_13_Figure_1.jpeg)

14

# Partitioning of Single Component (log X Axis)

![](_page_14_Figure_1.jpeg)

# **Partitioning at Specified COA in Solution**

![](_page_15_Figure_1.jpeg)

# **The Volatility Basis Set**

![](_page_16_Figure_1.jpeg)

 $C_{i}^{*} = \left\{0.01, 0.1, 1, 10, 100, 1000, 10^{4}, 10^{5}, 10^{6}\right\} \ \mu \text{g m}^{-3}$ 

#### $\alpha$ -pinene + Ozone

![](_page_17_Figure_1.jpeg)

 $\sim$  2x SOA under remote atmospheric conditions vs. extrapolation. [Presto and Donahue, *ES&T*, 2006]

 $\alpha$ -pinene and the Basis Set

![](_page_18_Figure_1.jpeg)

(mass yields  $\alpha'$ )

 $\alpha'_{i} = \{.004, 0, .05, .09, .12, .18, ...\}$ 

#### $\alpha$ -Pinene + Ozone Mass Balance

![](_page_19_Figure_1.jpeg)

Mass balance for 'nominal product' demands  $\xi_{max} = \sum_i \alpha_i \simeq 1.4$ .

#### $\alpha$ -Pinene + Ozone Product Distribution

![](_page_20_Figure_1.jpeg)

Products distributed over volatility space (a transformation vector) Note very small yield of 'nucleator', consistent with [Burkholder *et al.* 2006] Multiply yields by mass of  $\alpha$ -pinene consumed to get product masses.

[Donahue et al. in prep]

# **Basis-set 101: Basis Basics**

![](_page_21_Figure_1.jpeg)

Oxidize some amt. of precursor, say  $25 \,\mu g \,m^{-3}$ , and distribute products. Start adding from left and see which bin is roughly saturated. Partition that bin 50:50, others accordingly. Add salt to taste. Adjust accordingly.

[Donahue et al. in prep]

## Basis-set 101: Pop Quiz!!

![](_page_22_Figure_1.jpeg)

Oxidize 500  $\mu$ g m<sup>-3</sup>, of  $\alpha$ -pinene and calculate partitioning.

#### **Basis-set 101: Answer**

![](_page_23_Figure_1.jpeg)

### $\alpha$ -Pinene + Ozone Partitioning

![](_page_24_Figure_1.jpeg)

Partitioning changes with mass loading: x18 total loading = x100 C<sub>OA</sub>. Most of the OA compounds at 100  $\mu$ g m<sup>-3</sup> are not in the particles at 1.

[Donahue et al. in prep]

 $\alpha$ -pinene + Ozone: UV (no NO<sub>x</sub>)

![](_page_25_Figure_1.jpeg)

 $\alpha$ -pinene + Ozone: VOC:NO $_x$ 

![](_page_26_Figure_1.jpeg)

[Presto et al., ES&T, 2005b]

# **RO**<sub>2</sub> Fate

![](_page_27_Figure_1.jpeg)

Bottom line – tie SOA module into gas-phase RO<sub>2</sub> chemistry:

$$\{\alpha\} = \beta \{\alpha\}^{\mathsf{Iow}-\mathsf{NO}_{\mathsf{X}}} + (1-\beta) \{\alpha\}^{\mathsf{high}-\mathsf{NO}_{\mathsf{X}}}$$

#### $\alpha$ -Pinene + Ozone T Dependence

![](_page_28_Figure_1.jpeg)

[Pathak et al., JGR, 2007], [Stanier et al., ACPD, 2007]

 $\alpha$ -Pinene + Ozone Total Mass 300 K

![](_page_29_Figure_1.jpeg)

Dark green yields are guesses - total is constrained.

 $\alpha$ -Pinene + Ozone Total Mass 243 K

![](_page_30_Figure_1.jpeg)

Products shift left by 2.5 orders of magnitude.

(Note – [Saathoff *et al.* IAC 2006] saw  $\sim$ 1 AMF at 100-200  $\mu$ g m<sup>-3</sup> and 243 K.)

 $\alpha$ -Pinene + Ozone Total Mass 350 K

![](_page_31_Figure_1.jpeg)

Products shift right by 2.5 orders of magnitude.

#### $\alpha$ -Pinene + Ozone Thermodenuder

![](_page_32_Figure_1.jpeg)

Given time, all SOA evaporates at 70C.

[An et al., Aerosol Sci., 2007]

#### $\alpha$ -Pinene + Ozone Thermodenuder

![](_page_33_Figure_1.jpeg)

Denuding is a function of evaporation timescales.

[Pierce et al., in prep, 2007]

# $\alpha$ -pinene + O<sub>3</sub> Dilution

![](_page_34_Figure_1.jpeg)

Generate high SOA and then flush 90% of chamber air. Particles shrink *slowly* to expected size. [Grieshop *et al., GRL* 2007]

# **Dilution of Diesel Emissions**

![](_page_35_Figure_1.jpeg)

Dilution to smbient  $C_{OA}$  causes 67-90% evaporation of primary emissions.

[Shrivastava, Robinson, et al., ES&T [2006]

# **Basis Set Representation of Diesel Emissions**

![](_page_36_Figure_1.jpeg)

Emissions span volatility range, including 'IVOC'.

[Robinson, et al., Science [2007]

# **Basis-set 701: Advanced Basis**

![](_page_37_Figure_1.jpeg)

Consider *static* chamber experiments – i.e. 12 m<sup>3</sup> CMU chamber. Generate 100  $\mu$ g m<sup>-3</sup> SOA and then let 90% deposit to the walls (purple). What is in equilibrium?

Vapors + suspended aerosol or Vapors + suspended aerosol + wall aerosol??

(work it out....)

[Donahue et al. in prep]

# **Basis-set 701: Wall Deposition**

![](_page_38_Figure_1.jpeg)

The answer is **BOTH!** 

The suspended particles still represent the composition of  $100 \,\mu g \,m^{-3}$  SOA!

Deposition fractionates the total suspension toward the volatile products.

# **Basis-set 702: Steady-State Chambers**

![](_page_39_Figure_1.jpeg)

Now what happens in a 'steady-state' flow-through chamber?

Imagine an experiment with 10  $\mu g\,m^{-3}$  suspended SOA that lasts 9 deposition lifetimes, so that

 $C_{wall} = 9 C_{suspended}$ .

What happens to the distribution as particles collect irreversibly on the walls??

# **Basis-set 702: Flow-Through Wall Deposition**

![](_page_40_Figure_1.jpeg)

The suspended particles still represent the composition of  $10 \,\mu \text{g} \,\text{m}^{-3}$  SOA! However, the walls are covered with lower-volatility junk, total system at  $100 \,\mu \text{g} \,\text{m}^{-3}$ 

Perturbing this system could have all kinds of strange consequences (it is buffered). **Bottom Line:** Individual particles only know about the vapors. Be very, very careful designing (and interpreting) experiments.

# **CONGRATULATIONS!**

You are now a basis-set black belt.

## **Does Chamber SOA = OOA?**

![](_page_42_Figure_1.jpeg)

And now for the start of a lot of bad news... Chambers don't make OOA AMS spectrum from limonene +  $O_3$  is not OOA. [J. Zhang *et al. JPhysChem.* 2006]  $\alpha$ -pinene +  $O_3$  just as bad – in fact *no* volatile precursors make OOA in chambers.

# Where Are We?

- The existing picture nonvolatile POA and semi-volatile SOA is wrong.
  - SOA (as OOA) has relatively low volatility.
  - POA (as HOA) is quite volatile.
- At the same time, chamber SOA is not oxidized enough in the AMS.
- The hypothesized solution is chemical aging:
  - Most mass, even low volatility emissions, is in vapor phase.
  - Gas-phase OH rate constant  $\sim$  3  $\times$  10<sup>-11</sup> :  $\tau$   $\sim$  6 hr.

# **Implications: Vapors**

![](_page_44_Figure_1.jpeg)

The mass not seen in the particles is in the gas phase, very low vapor pressure.

# Limonene + Ozone Mass Balance

![](_page_45_Figure_1.jpeg)

D-limonene +  $O_3$  makes more SOA than  $\alpha$ -pinene (2nd generation of oxidation).

[J. Zhang et al., JPC, 2006]

# Implementing Basis Set in PMCAMx

![](_page_46_Figure_1.jpeg)

July 2001 Biogenic SOA

Old  $\sim$ constant yield

New Basis set yields

Multi-generation aging

- New basis set parameters cause most SOA to evaporate at ambient COA.
- Adding aging (gas-phase OH oxidation) can generate *lots* of SOA.
- Aging parameters are not yet known (these are a reasonable guess).

[Lane et al. in prep]

# **Photooxidation of Diesel Emissions**

![](_page_47_Figure_1.jpeg)

Oxidized fraction looks a lot like OOA.

# **Implementation in PMCAMx**

![](_page_48_Figure_1.jpeg)

Oxidation of vapors produces regional organic aerosol.

Robinson et al. Science [2007]

# **SOA in PMCAMx**

![](_page_49_Figure_1.jpeg)

The aerosol is now 90% SOA in the region and 60% SOA in cities, just like AMS.

Robinson et al. Science [2007]

# **Conclusions Picture**

![](_page_50_Figure_1.jpeg)