

Transport of Gas-Phase Anthropogenic VOCs to the Remote Troposphere during the NASA ATom Mission

Rebecca Hornbrook^{*,1}, Eric Apel¹, Alan Hills¹, Elizabeth Asher¹, Louisa Emmons¹, Forrest Lacey¹, Simone Tilmes¹, Doug Kinnison¹, Jean-Francois Lamarque¹, Don Blake², Nicola Blake², Isobel Simpson², Barbara Barletta², Simone Meinardi², Steve Montzka³, Fred Moore³, Kathryn McKain³, Eric Ray³, Tom Ryerson⁴, Chelsea Thompson⁴, Jeff Peischl⁴, Paul Bui⁵, Bruce Daube⁶, Steve Wofsy⁶, Róisín Commane⁶, Tom Hanisco⁷, Glenn Wolfe⁷, Jason St. Clair⁷, and the ATom Science Team. *rsh@ucar.edu; 1Atmospheric Chemistry Observations & Modeling Laboratory, NCAR, Boulder, CO; 2University of California, Irvine, CA; 3Global Monitoring Division, ESRL, NOAA, Boulder, CO; 4Chemical Sciences Division, ESRL, NOAA, Boulder, CO; ⁵NASA Ames Research Center, Mountain View, CA, ⁶Harvard University, Cambridge, MA; ⁷NASA Goddard Space Flight Center, Greenbelt, MD.

Atmospheric Tomography (ATom) Mission

Primary questions: What are chemical processes that control the short-lived climate forcing agents CH_4 , O_3 , and BC in the atmosphere? How is the chemical reactivity of the atmosphere on a global scale affected 20 by anthropogenic emissions? How can we improve chemistry-climate modeling of these processes?

Study Regions:

- **1. PACIFIC**: < 70°W
- **2. ATLANTIC**: > 70°W
- **3. ARCTIC**: > 60°N, separated at 100°W
- **4. CONUS**: 23°N to 60°N, 125° to 54°W

Trace Gas Measurements

For the four ATom deployments, VOCs (Volatile Organic Compounds) and other trace gases are being measured by a large payload of instruments.

Instrument	Instrument Description	PI	Species Measured
TOGA	Trace Organic Gas Analyzer; gas chromatography/mass spectrometry	Eric Apel (NCAR)	NMHCs, OVOCs, Halocarbons DMS
WAS	Whole Air Sampler, canister sampling and laboratory analysis.	Don Blake (UCI)	NMHCs, Halocarbons, Alkyl N DMS, CS ₂
NOyO ₃	NOAA Nitrogen Oxides and Ozone, chemiluminescence	Tom Ryerson (NOAA)	NO, NO ₂ , NOy, O ₃
PANTHER/ UCATS	PAN and Trace Hydrohalocarbon ExpeRiment/UAS Chromatograph for Atmospheric Trace Species	Jim Elkins (NOAA)	PANTHER: $(CH_3)_2CO$, PAN, H_2 , SF ₆ , CFCl ₃ , CF ₂ Cl ₂ , Halon-1211 UCATS: N ₂ O, SF ₆ , CH ₄ , CO, O ₃
NOAA Picarro	NOAA Picarro, wavelength-scanned cavity ring down spectroscopy	Kathryn McKain (NOAA)	CO ₂ , CH ₄ , CO
PFP	Programmable Flask Package glass flask automated whole air sampler and laboratory analysis.	Steve Montzka (NOAA)	N_2O , SF_6 , H_2 , CS_2 , OCS , CO_2 , C HCFCs, HFCs, Solvents, Methy Hydrocarbons, Perfluorocarbo

Global Model

- **CESM1**: Community Earth System Model, version1
- CAM-chem (Community Atmospheric Model Version 5.4 with comprehensive tropospheric and stratospheric chemistry) 0.9° x 1.25° horizontal resolution

Bruce Daube

(Harvard)

• **MOZART TS1** chemical mechanism

Quantum Cascade Laser System

- HTAP2 2010 anthropogenic emissions used for every year
- **FINN** (Fire INventory from NCAR) daily fire emissions
- MEGAN (Model of Emissions of Gases and Aerosols from Nature) biogenic emissions

Early morning preflight in Palmdale during ATom-2. Photo: Rebecca Hornbrook

Figure 2. TOGA observations from ATom-1 and -2 of selected VOCs shown on a global map in which the largest points indicate the lowest altitude data, and by altitude-latitude separated into Pacific + western Arctic (top) and Atlantic + eastern Arctic (bottom) for each VOC for each deployment. Points in grey are below the detection limit.

Comparisons with the Global Model

CAM-chem model output along the flight tracks agree fairly well with observed O_3 and CH_2O (not shown). In Figure 3, the model compound BIGALK agrees very well with the observed sum of butanes in the remote troposphere where alkanes > C_4 are low. Modeled and observed benzene agree reasonably well in the NH, but the model predicts a large benzene signal in the tropical Atlantic region that was not observed. A significant summer to winter difference in acetone was observed in the NH mid-latitudes and Arctic region, presumably due to differences in photochemical production, but this was not predicted by the model. The model far overpredicts MEK in the NH during NH winter (not shown), but as the MOZART TS1 MEK is a composite of ketones produced from BIGALK oxidation, it is difficult to directly compare to observed MEK.

Figure 3. Measurements and model output for selected VOCs and CO, binned by altitude, latitude bands, and study region. "Butanes" is the sum of TOGA isobutane and n-butane and the C₄₊ alkane model compound BIGALK. CO_{avg} is the mean of the TOGA-merge NOAA CO and QCLS CO.

Summary

- The ATom mission has provided a comprehensive suite of the resulting data set will be unprecedented.

A11G-1958

observations in the remote troposphere that demonstrates seasonal and hemispheric variability in the atmospheric loading of trace gases. With two more deployments (May 2018 and Oct 2017),

 Comparison with a CAM-chem model simulation shows areas of good agreement while highlighting several areas where the emission inventories and chemistry need improvement. The addition of long-lived species (e.g., CH₂Cl₂), and the inclusion of speciated butanes and their oxidation products will allow assessment of both inventories and chemistry using this data set

