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Approx # of abstracts

P

Umbrella topics (from recent NSF
awards and 2017 AAAR abstracts)

* Personal exposure (low cost sensors, increased
spatiotemporal resolution, toxicity, and urban design)

* Source apportionment methods (PMF, ME-2, and friends) =t endchambers = Chemistry of s0A

Personal Exposure Source apportionment
* Developments in instrumentation and chambers p "
(continuous flow reactors, SP-AMS, EESI-TOF, and TD-CAPS
as well as vapor wall-loss corrections for chamber expts and
remote sensing)

* Chemistry of SOA (meas-model comparisons, role of
oxidants, role of particle viscosity and volatility, role of
nitrogen, nighttime chemistry, non-vehicular VOCs,
heterogeneous chemistry & partitioning, aerosol pH, and
extreme air pollution events, and much more)
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State of science and current questions in

Instrumentation, techniques, and
chambers

PAM OFR with stepped aging,
Ortega et al., 2016
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State of science and current questions in

Instrumentation, techniques, and chambers

* Extractive electrospray ionization ToF mass spec for online soft
ionization (2017 Zurich study, PSI, 2017 AAAR)

* HRToF-ESCIMS for improved sensitivity to groups of SOA precursors
without a radioactive source (Univ of Washington, 2017 AAAR)

* Thermal dissociation CAPS for alkyl nitrates and peroxy nitrates
(Deployed in Atlanta, from Georgia Tech)
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State of science and current questions in

Source Apportionment: PCA, CMB,
unconstrained PMF, or ME-2+PMF

* We can constrain PMF model output with
target profiles (multi-linear engine, ME-2,
Paatero 1999, Canonaco et al., 2013)

e Consider using short time-span (e.g. seasons)
for ME-2 analysis to achieve better model
output because profiles may change between

seasons (Reyes-Villegas et al., 2016) . A /////////// -
* Couple ME-2 on offline AMS data with *4C to
constrain O:C from fossil and modern carbon

sources (OC;, .. VS OC_ . osit), Vlachou et al.,
2018
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Secondary organic aerosol formation from anthropogenic air
pollution: Rapid and higher than expected

Rainer Volkamer,'** Jose L. Jimenez,” Federico San Martini,"** Katja Dzepina,’
Q1 Zhang,3 > Dara Salcedo,® Luisa T. Molina,"’ Douglas R. Worsnop,8
and Mario J. Molina'~?
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SOA Measurements vs models

[SOA] (ug m™) Ratio (low/no)

* More explicit
correction for
vapor wall losses
(contrast with
scaling in previous
model
comparison)
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SOA Measurements vs models
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State of science and current questions in

Chemistry of SOA

* When do models get HO, right? And when do they over/under
predict? (And what does that tell us about the missing VOCs or
reactions?) Griffith et al., 2016, JGR

 Where and when is SOA liquid? Phase state estimated from MW and
0:C, and modeled globally using EMAC/ORACLE indicates semi-solid
in dry mid-latitudes (Shiraiwa et al., 2017 Nat. Comm).
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Urban SOA and ozone reduction

* |f reduction is the goal, should we limit VCPs? (McDonald 2018)
Maybe only aldehydes and alcohols? (de Gouw 2018)

* Or be concerned that NO, is getting too low relative to gasoline-
vehicle derived VOCs for further SOA reduction? (Zhao 2017 and
Warneke 2013)

* How does the chemistry/toxicity of low NO, SOA differ? (since NO,
is predicted to continue dropping w/ stricter emissions standards)

 What role does long range transport play in western and eastern
US? In Europe?

 What is in store for places like Beijing, where ozone may increase as
PM is initially reduced?
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Additional possible topics for discussion

* Urban forested areas and the role of biogenic emissions in urban areas (Bonn 2017 Journal
Cleaner Production)

* Cold, dark SOA formation (urban polar regions)

e Urban “street canyons” and urban design

* Trace metals and SOA formation (catalysis)

e Chemistry of aromatics in SOA formation

* Role of condensed water in SOA formation (clouds, fog, aerosol water)

. Unint?nded conseguences (cool roofs and ozone, PM reduction in China linked to increase in
ozone

* Exposure to air pollution indoors in urban environments (both low and high NO, )

* Coatings on BC in urban environments (Chemistry/Climate)

* Role of ammonia in SOA, brown carbon

e Extreme air pollution events driven by a combination of chemistry and meteorology.
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Take Aways

We learned a lot from CalNex and continue to do so

LA SOA is important, but what about urban areas in a) humid climates, b)
biogenically-influenced regions, c) much higher NO, conditions, d) places with
different P-S/IVOCS?

We'll find what we are looking for - Do we need another CalNex/SENEX, to target
volatile chemical product SOA instead of vehicular SOA? If so, when and where?
Developed vs developing megacities? Biogenically influenced vs not?

We probably need more chamber studies to quantify SOA yields from VOCs
specific to VCPs and cooking and to quantify species-specific wall losses

Is improved SOA model/measurement agreement to date for the RIGHT reasons?
I(e.g) wall loss corrections, including P-S/IVOCS, multi-step aging, fragmentation
0SS

How can we learn more about particle-phase oxidation processes so that O:C and
total SOA can be modeled correctly?
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SOA Measurements vs models

+ Hayes 2015 https://www.atmos-chem-phys.net/15/% 015/
 Ma 2017 https://www.atmos-chem-phys. net/17/9237/2017/
* Robinson 2007 http://science.sciencemag.org/content/315/5816/1259

* Volkamer 2006 models underestlmated SOA (is th|s about glyoxal? Likely)
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* Dzepina 2011




