WRF-Var

Hans Huang, NCAR

WRF-Var: WRF Variational data assimilation

Acknowledge:
NCAR/ESSL/MMM/DAG, NCAR/RAL/JNT/DATC,
AFWA, USWRP, NSF-OPP, NASA, AirDat,
KMA, CWB, CAA, BMB, EUMETSAT
ARW = Advanced Research WRF (NCAR) Core
NMM = Nonhydrostatic Mesoscale Model (NCEP) Core
WRF-Var (WRFDA) Data Assimilation Overview

- **Goal:** Community WRF DA system for
 - regional/global,
 - research/operations, and
 - deterministic/probabilistic applications.
- **Techniques:**
 - 3D-Var
 - 4D-Var (regional)
 - Ensemble DA,
 - Hybrid Variational/Ensemble DA.
- **Model:** WRF (ARW, NMM, Global)
- **Support:**
 - NCAR/ESSL/MMM/DAG
 - NCAR/RAL/JNT/DATC
- **Observations:** Conv.+Sat.+Radar
The WRF-Var Program

- NCAR staff: 15FTE
- Non-NCAR collaborators: ~10FTE.
- Community users: ~30 (more in 6000 general WRF downloads?).
The first WRF-Var tutorial

- July 21-22, 2008
- 9 hours lectures and 4 hours hands on
- 53+ participants, US and international

WRF-Var tutorial agenda
http://www.mmm.ucar.edu/events/tutorial_708/agenda/agenda.php

WRF-Var tutorial presentations
http://www.mmm.ucar.edu/wrf/users/tutorial/tutorial_presentation.htm

WRF-Var online tutorial and user guide

Next: 2/2-4/2009
WRF-Var Observations

- **In-Situ:**
 - Surface (SYNOP, METAR, SHIP, BUOY).
 - Upper air (TEMP, PIBAL, AIREP, ACARS).

- **Remotely sensed retrievals:**
 - Atmospheric Motion Vectors (geo/polar).
 - Ground-based GPS Total Precipitable Water.
 - SSM/I oceanic surface wind speed and TPW.
 - Scatterometer oceanic surface winds.
 - Wind Profiler.
 - Radar radial velocities and reflectivities.
 - Satellite temperature/humidities.
 - GPS refractivity (e.g. COSMIC).

- **Radiative Transfer:**
 - RTTOVS (EUMETSAT).
 - CRTM (JCSDA).

KMA Pre-operational Verification:

<table>
<thead>
<tr>
<th>TIME</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat Score</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Bias</td>
<td>0.00</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
<td>1.50</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Threshold = 5.0mm

2004082600 ~ 2004092812

(with/without radar)
WRF 4D-Var Summary

- 4D-Var included within WRF-Var.
- Linear/adjoint models based on WRF-ARW.
- Status:
 - Parallel code, JcDFI, limited physics.
 - Current focus: PBL/microphysics, optimization.
- Advantages of 4D-Var
 - Flow-dependent response to obs
 - Better treatment of cloud/precip obs
 - Forecast model as a constraint
 - Obs at obs-times
WRF-Var and NMM (Pattanayak and Rizvi)
Analysis increments

Difference of 00 hours forecast from NMM at Sigma level=25
Global WRF-Var
(Rizvi and Duda)

Analysis increments
Adjoint sensitivity (Thomas Auligne)

Observation (y)

WRF-VAR Data Assimilation

Analysis (x_a)

WRF-ARW Forecast Model

Forecast (x_f)

Define Forecast Accuracy

Forecast Accuracy (F)

- **Observation Impact**
 \[\langle y - H(x_b) \rangle \left(\frac{\partial F}{\partial y} \right) \]

- **Adjoint of WRF-VAR Data Assimilation**

- **Analysis Sensitivity**
 \[\left(\frac{\partial F}{\partial x_a} \right) \]

- **Adjoint of WRF-ARW Forecast TL Model (WRF+)**

- **Gradient of F**
 \[\left(\frac{\partial F}{\partial x_f} \right) \]

- **Define Forecast Accuracy**

- **Observation Impact**
 \[\langle y - H(x_b) \rangle \left(\frac{\partial F}{\partial y} \right) \]

- **Adjoint of WRF-VAR Data Assimilation**

- **Analysis Sensitivity**
 \[\left(\frac{\partial F}{\partial x_a} \right) \]

- **Adjoint of WRF-ARW Forecast TL Model (WRF+)**

- **Gradient of F**
 \[\left(\frac{\partial F}{\partial x_f} \right) \]

- **Define Forecast Accuracy**

- **Observation Impact**
 \[\langle y - H(x_b) \rangle \left(\frac{\partial F}{\partial y} \right) \]

- **Adjoint of WRF-VAR Data Assimilation**

- **Analysis Sensitivity**
 \[\left(\frac{\partial F}{\partial x_a} \right) \]

- **Adjoint of WRF-ARW Forecast TL Model (WRF+)**

- **Gradient of F**
 \[\left(\frac{\partial F}{\partial x_f} \right) \]

- **Define Forecast Accuracy**
Adjoint of WRF-VAR DA: Observation Impact
Future Plans

General Goals:
- Unified, multi-technique WRF DA system.
- Retain flexibility for research, multi-applications.
- Leverage international WRF community efforts.

WRF-Var Development (MMM Division):
- 4D-Var (additional physics, optimization).
- Sensitivities tools (adjoint, ensemble, etc.).
- EnKF within WRF-Var -> WRFDA.
- Instrument-specific radiance QC, bias correction, etc.

Data Assimilation Testbed Center (DATC):
- Technique inter-comparison: 3/4D-Var, EnKF, Hybrid
- Obs. impact: AIRS, TMI, SSMI/S, METOP.
- New Regional testbeds: US, India, Arctic, Tropics.

Applications:
- Hurricanes/Typhoons
- OSEs and OSSEs
- Reanalysis (Arctic System Reanalysis)
Assimilation methods (for WRF-Chem?)

• Empirical methods
 – Successive Correction Method (SCM)
 – Nudging
 – Physical Initialisation (PI), Latent Heat Nudging (LHN)

• Statistical methods
 – Optimal Interpolation (OI)
 – 3-Dimensional VARiational data assimilation (3DVAR)
 – 4-Dimensional VARiational data assimilation (4DVAR)

• Advanced methods
 – Extended Kalman Filter (EKF)
 – Ensemble Kalman Filter (EnFK)
Sequential data assimilation

The Extended Kalman Filter:

For the analysis step i:

$$K_i = P_i^f H_i^T (H_i P_i^f H_i^T + R)^{-1}$$

$$x_i^a = x_i^f + K_i [y^o - H(x_i^f)]$$

$$P_i^a = (I - K_i H_i) P_i^f$$

For the forecast step, from i to $i+1$:

$$x_{i+1}^f = M(x_i^a)$$

$$P_{i+1}^f = M_i P_i^a M_i^T + Q_i$$
3D-Var (4D-Var replace H by HM)

$$J = \frac{1}{2}(x - x^b)^T B^{-1} (x - x^b) + \frac{1}{2}(y - H(x))^T R^{-1} (y - H(x))$$

The incremental formulation (in the general form, $x^g \neq x^b$!)

$$J = \frac{1}{2}(x - x^g + x^g - x^b)^T B^{-1} (x - x^g + x^g - x^b) + \frac{1}{2}(y - H(x^g) + H(x^g) - H(x))^T R^{-1} (y - H(x^g) + H(x^g) - H(x))$$

$\delta x = x - x^g$

$\mathbf{d} = y - H(x^g)$

$H(x) - H(x^g) = H\delta x$

$$J = \frac{1}{2}(\delta x + x^g - x^b)^T B^{-1} (\delta x + x^g - x^b) + \frac{1}{2}(\mathbf{d} - H\delta x)^T R^{-1} (\mathbf{d} - H\delta x)$$

The first outer-loop: $x^g = x^b$

$$J = \frac{1}{2}\delta x^T B^{-1} \delta x + \frac{1}{2}(\mathbf{d} - H\delta x)^T R^{-1} (\mathbf{d} - H\delta x)$$

Outer-loop:

\mathbf{d} (and QC, etc) … nonlinear!

Inner-loop: minimization

update x^g
Issues on data assimilation

- Observations y^o
 (Also for WRF-Chem!)
- Observation operator H
- Observation errors R
- Background x^b
- Size of B: statistical model and tuning
- M and M^T: development and validity
- Minimization algorithm (Quasi-Newton; Conjugate Gradient; ...)
- Model errors Q
- Size of P^f and P^a: simplifications