Mixing in the vicinity of the subtropical and polar jets - Observations (START-05) versus CLaMS

P. Konopka, G. Günther, J.-U. Grooß, R. Müller, R. Walter, A. Kunz, B. Vogel

J. C. Wei, L. L. Pan

P.Konopka@fz-juelich.de

http://www.fz-juelich.de/icg/icg-i/www_export/p.konopka.

Research Center Juelich, ICG-I: Stratosphere, Germany

...CLaMS-Model...

CLaMS-Model

- CLaMS Lagrangian Chemistry Transport Model
- Potential temperature/pressure as vertical coordinate in the stratosphere/troposphere
- B Horizontal and vertical velocities from meteor. winds (ECMWF) and/or a radiation scheme

Trajectory

Chemistry

Sedimentation

Mixing

Lagrangian mixing

 Full stratospheric + simplified tropospheric chemistry
 Lagrangian particle sedimentation scheme

McKenna et al., JGR, 2002, Konopka et al., JGR, 2004, Grooß et al., 2005, ACP, Konopka et al., ACP, 2007

Greenland from space shuttle (NASA)

CLaMS with stratosphere and troposphere

Convection AND radiative forcing \Rightarrow Hybride ζ -coordinates, Mahowald et al., JGR, 2002

|PV| [PVU]

Vertical cross section of PV (ECMWF), Konopka et al., ACP, 2007

CLaMS with stratosphere and troposphere

Convection AND radiative forcing \Rightarrow Hybride ζ -coordinates, Mahowald et al., JGR, 2002

Vertical cross section of PV (ECMWF), Konopka et al., ACP, 2007

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

CLaMS with stratosphere and troposphere

Convection AND radiative forcing \Rightarrow Hybride ζ -coordinates, Mahowald et al., JGR, 2002

Vertical cross section of PV (ECMWF), Konopka et al., ACP, 2007

		Multi-annual CLaMS simulations			
_	Model domain: Troposphere+Stratosphere				
	lower bound	following layer wit	th Δ	$\zeta = 50$ K	
	upper boundary: $ heta=2500$ K (stratopause), K		onopka et al., ACI	007	
۹	Considered sp	ecies			
	species	lower boundary	upper bounda	ry	
	CH_4	CMDL	HALOE		
	Mean Age	linear source	MIPAS (SF6)	- HALOE - Climatology: Grooss and Russell, ACP, 2005
	CO_2	CMDL	CMDL+Mean A	Age	- CMDL: GLOBALVIEW, 2007
	CO	CMDL+MOPITT	Mainz-2D		CO ₂ /CH ₄ /CO since 1979/84/91 P. Tans, K. Masarie, P. Novelli
	O_3	0	HALOE, $\theta \ge 50$	00 K	- CMDL: CATS (4 stations)
	O_3 (tracer)	0	HALOE, $\theta \ge 50$	00 K	N ₂ O, F11, J. Elkins - MIPAS. SF6-Age
	HCI	0	HALOE, $\theta \ge 50$	00 K	Stiller et al., ACPD, 2007
	H_20	ECMWF, $ heta \leq 380$ K, ($\zeta = 280$ K)	HALOE		- MOPITT (V3) Walter at al., PhD, 2008
	N_2O , F11	CMDL (CATS)	0		

Simplified chemistry

 $\begin{array}{l} \mathsf{CH}_4 \Rightarrow (\mathsf{OH}, \, \mathsf{O}(^1\mathsf{D}), \, \mathsf{CI}) \Rightarrow \mathsf{H}_2\mathsf{O}, \, \mathsf{CO} \Rightarrow (\mathsf{OH}) \Rightarrow \mathsf{CO}_2\\ (\mathsf{h}\nu) \Rightarrow \mathsf{O}_3\\ \mathsf{N}_2\mathsf{O}, \, \mathsf{F11} \Rightarrow (\mathsf{O}(^1\mathsf{D}), \, \mathsf{h}\nu) \end{array}$

- Multi-annual: 1.10.2001 1.09.2006 (today)
- **P** Entropy preserving layer, highest vertical resolution with $\alpha = 250$ around $\theta = 380$ K
- Perpetuum runs (\approx 5 years) to find a stationary state (initial condition from HALOE or Mainz-2D). Such a stationary state is used as the initial distribution for the main run.
- Hor. resolution: 200/100 km + nested runs (50 km)

θ=2500 K

...Mixing in CLaMS...

Mixing in the vicinity of the subtropical jet

Subtropical jet over Himalayas

Hurricane Ivan from space shuttle (NASA)

Mixing in the vicinity of the subtropical jet

Hurricane Ivan from space shuttle (NASA)

Mixing in the vicinity of the subtropical jet

Hurricane Ivan from space shuttle (NASA)

Mixing in CLaMS

Lagrangian realization of Smagorinsky idea, Mon. Wea. Rev, 1963

$D \sim \nabla \times \mathbf{u}$, i.e. $D \sim \text{shear and strain rates}$

(in Eulerian models: $D \sim \mathbf{u}$, Courant at al., Math Annalen, 1928)

Mixing in CLaMS is driven by vertical shear and horizontal strain rates (\Rightarrow inhomogeneous in time and space)

(in Eulerian models: homogenous mixing with $D_{\rm Euler} \approx 100 D_{\rm CLaMS}$)

CLaMS versus SPURT

measurements distribution

CLaMS versus SPURT

CO/O₃ correlations Oservations: gray CLaMS: colored with the mean age

CLaMS versus SPURT

Seasonality of CO/O₃ correlations

Seasonality of CO/O₃ correlations

Seasonality

Seasonality of CO/O₃ correlations

Seasonality

Seasonality of CO/O₃ correlations

Seasonality of CO/O₃ correlations

...CLaMS and START-05...

START-05: H2O-Ozone correlations

START-05: H2O-Ozone correlations

Latitude

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

CLaMS Simulations

- 5-years global simulations, hor/vert resolution 100 km/400 m, troposphere+stratosphere
- Ozone: $\theta > 500$ HALOE, Boundary layer: set to 0
- H2O: $\theta < 380$ ECMWF, Upper boundary: HALOE
- Re-Initialization on 25.11.2005 with AIRS ozone
- Nested simulations 10 < lat < 90 N, $\theta < 500$ K up to 50 km hor. resolution
- Sensitivity studies with respect to mixing

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Left: Reference (with AIRS) Right: + enhanced mixing

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

CLaMS (after 4 years): $\theta = 500 \text{ K}$: (HALOE) Boundary Layer: Ozone=0 no distruction cycles $r_0 = 100$ km (global)

500

re-initialized at 25.11.2005 enhanced mixing enhanced resolution $r_0 = 50$ km (nested)

500

Conclusions

START-05

- 1. Multi-annual (5 years) CLaMS runs (100 km hor. resol.) reproduce the observed variability of O₃.
- 2. Nested runs (50 km hor. resol.) with enhanced (CLaMS) mixing improve such simulations
- 3. CLaMS overestimates the lifetime of stratospheric intrusions in the troposphere:
 - (-) due to neglected ozone destruction cycles ?
 - (-) due to wrong vertical velocities (ECMWF versus radiation)?
 - (-) due to incomplete (CLaMS) mixing ?
- START-08 some ideas...
 - 1. CLaMS driven by GFS (NCEP) winds (heating/cooling rates from NCEP data ?)
 - 2. "nearly real time", high resolution (50 km or higher, nested mode) simulations during the campaign with O_3 , CO, CO₂, H₂O, age spectrum (no forecast mode !).
 - Improvement of CLaMS mixing,
 e.g. driven by thermal stability, *N*-Brunt-Väisälä frequency, *Ri*-gradient Richardson number (Jaeger and Sprenger, JGR, 2007).
 - 4. Influence of double tropopause on mixing (Randel et al. JGR, 2007)
 - 5. Seasonality of transport versus jet strength (polar and subtropical)

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

