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Outline:

* Motivation for gravity wave observations April/June in NH
* Key observations on HIAPER for characterizing gravity waves

* Satellite observations of gravity waves for STARTO8



April Period: Springtime Transition to Stratospheric Easterlies

* A “cold-pole problem” plagues most GCMs in the winter stratosphere.
* Related ~ one-month delay in the transition to easterlies in springtime.
* Associated effects on planetary wave propagation, errors in the

number and timing of sudden stratospheric warming events, and the
stratospheric transport circulation..
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April Period: Springtime Transition to Stratospheric Easterlies

Scaife et al. [2002, JAS] Downward Control Estimates at 90mb
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June Period likely better for observing waves generated
by convection:

* Known to be an important source in the tropics.

* May be important for spring/summer driving of the stratospheric
residual circulation.

* Momentum flux from this source still highly uncertain:
- Observational validation needed for cloud-resolving model studies
and GCM parameterizations of waves from this source.

* Parameterizations based on the properties of convective heating.
An ideal situation to test the parameterizations would be to fly over
a storm located within a precipitation radar site:

- Use the radar to characterize the convective heating.
- Compare the aircraft wave observations to the parameterization.



Key Observations for Characterizing Gravity Waves
and their Sources via Aircraft

1. Long, level, and straight flight legs: The length of the flight leg limits
the maximum horizontal wavelength that can be observed.

CRYSTAL-FACE: Wang et al. [2006, ACP]
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Key Observations for Characterizing Gravity Waves
and their Sources via Aircraft

2. MMS for in situ wind & temperature Wavelet Analysis:
Gives apparent horizontal wavelength and S-transform Amplitudes
propagation direction : Ums V. mls
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Key Observations for Characterizing Gravity Waves
and their Sources via Aircraft

3. MTP for vertical wavelength
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Satellite Observations

HIRDLS = High Resolution Dynamics Limb Sounder

* Infrared limb scanning instrument
* High vertical resolution (1.2 km)
* High horizontal resolution along-track (~100 km)

HIRDLS Cross-Sections Over the Patagonian Andes: 16 May 2006
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Satellite Observations

HIRDLS: Global Properties 16 May 2006

Derived from wavelet covariance of adjacent pairs of vertical profiles
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Satellite Observations
HIRDLS: 20 April 2005
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Satellite Observations

HIRDLS: 20 April 2005 L Ascending
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Latitude

Satellite Observations

AIRS = Atmospheric Infrared Sounder

* Infrared near-nadir sounding instrument

* Image swaths with high horizontal resolution (13.5 km at nadir)

* Low vertical resolution (waves with vertical wavelengths > 12 km)

Waves Observed by AIRS Over Summer Storms in the Continental US
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Satellite Observations
AIRS = Atmospheric Infrared Sounder

Hoffmann and Alexander [2008, in preparation]: New full resolution AIRS
temperature retrievals in the stratosphere to give full 3D wave structure.

Gravity waves produced by deep convection...

full resolution retrieval operational retrieval
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— RHetrieval at full horizontal resolution reveals small-scale structures.



Summary Points

1. Jet imbalance may be an important source in April, but the
nature of waves driving the springtime transition to stratospheric
easterlies is of general interest. In June, more likely to observe
waves from convection.

2. Need three ingredients to characterize gravity waves observed

from aircraft:
A. Long, straight, level flight legs
B. In situ winds and temperatures at high precision (0.1m/s, 0.1K)
C. MTP for vertical wavelength information

All three are needed to determine where the waves come from

and their subsequent effects on the atmosphere.

3. Satellite observations of gravity waves for STARTO0S:
- HIRDLS' high vertical resolution particularly valuable for waves

from jet sources.
- AIRS will become useful in June for waves from convection.
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Along-Track: Wavelet Analysis

S-transform analysis of a synthetic vertical temperature profile

Example S-transform Wavelet transform amplitude spectrum
wavelet basis functions of theoretical 3-wave T’ profile
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Wavelet Analysis
of profile series

Phase difference A¢ between

adjacent profiles gives:

Horizontal wn = k ~ A¢/Ax
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Gravity Waves in HIRDLS

Wavelet covariance analysis: adjacent profile pairs

Find maximum T' covariance and associated A, A¢ (lon, lat, z)
- A@ -> A along the line joining adjacent profiles.

Result = T' covarying amplitude (lon, lat, z, A, A, )

Method similar to Ern et al. (2004)! as applied to CRISTA.

Horizontal spacing between profiles is proportional to minimum
derivable horizontal wavelength

* CRISTA spacing ~200-250km; HIRDLS spacing ~100km
* CRISTA Az ~2.5-3km; HIRDLS Az ~1.2km

'Ern, M., P. Preusse, M.J. Alexander, and C.D. Warner, 2004: Absolute
values of gravity wave momentum flux derived from satellite data.
J. Geophys. Res., 109, D20103, doi:10.1029/2004JD004752.
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Key Observations for Characterizing Gravity Waves
and their Sources via Aircraft

MMS: Meteorological Measurement System (Scott et al., 1990)
Measures 3-D vector winds and T at aircraft flight level.
Excellent data quality (0.1 m/s for winds, 0.1 K for T)
Horizontal resolution ~ 200 m

MTP: Microwave Temperature Profiler (Denning et al., 1989)

Measures vertical T profiles along flight path by microwave remote
sensing

Data quality is best at the flight level (0.25 K).
Horizontal resolution ~ 2 km
Vertical resolution is ~ 160 m at the flight level.

Wang et al. [2005, ACP]
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Gravity Waves in Other Data Sets
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CRISTA measurements from
one week of data Aug 1997,
z=25 km, includes longer 2,

than these HIRDLS results.

GPS/MET from many months
of observations Nov-Feb,
z=20-30 km, include only short
A, waves similar to HIRDLS.

Both show the equatorial peak
and winter > summer seasonal
asymmetry.
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