

A pulsed QC-laser based dual-spectrometer instrument for airborne measurements of CO₂, CO, CH₄ and N₂O

R. Jiménez, B.C. Daube, S. Park, E.A. Kort, E. Gottlieb, S.C. Wofsy

Harvard University Cambridge, MA 02138, USA <u>jimenez@fas.harvard.edu</u>

J.B. McManus, D.D. Nelson, <u>M.S. Zahniser</u> Aerodyne Research, Inc. Billerica, MA 01821, USA

FLAIR 2007 – Florence, Italy

Outline

- Rationale
- Spectroscopic considerations
- QCL operation
- Spectrometers and spectra (2-QCL and CO_2)
- Control systems
- Calibration
- Integration
- Conclusions and perspectives

Rationale: significance / requirements

CO₂, CH₄, N₂O: most important long-lived GHG
 CO → OH scavenging → oxidative capacity reduction → indirect effect on radiative balance

	Long term accuracy		(1-s) Precision [ppbv Hz ^{-1/2}]		Atmospheric range [ppbv]		Figure of merit (FOM)	
Tracer	ppbv	%	Target	Lab	BL-FT	TTL-LS	BL-FT	TTL-LS
CO ₂	200	0.05%	100	20	50,000	10,000	250	50
со	1	1%	0.5	0.3	1,000	100	1000	100
CH ₄	2	0.1%	1	0.6	500	40	250	20
N ₂ O	0.2	0.06%	0.1	0.06	5	20	25	100

FOM = range / accuracy

Calibrations traceable to world standards; BL: boundary layer; FT: free troposphere; TTL: tropical tropopause layer; LS: lower stratosphere

- Long-lived species (CO moderately long lived) → small atmospheric concentration range → high fractional precision/accuracy required (≤ 0.1%)
- □ Ability to resolve variation (FOM) \rightarrow TTL-LS very demanding!
- Airborne \rightarrow fast response required (~1 Hz)

Rationale: atmospheric science goals

 TTL: stratosphere source (H₂O, GHG, SLS) region
 CO₂ clock → mean age (±100 ppbv → ±3 day precision)
 CH₄ (inter-hemispheric mix), CO, N₂O (tropo-, stratospheric □ influence) → constraints

<page-header><page-header>

GHG flux estimation

Lagrangian approach:

$$c = c_{BG} + \Delta c$$
$$\Delta c = \int dt \cdot \int_A E'' \cdot f d^2 x$$

 STILT → back trajectories → (BL) influence (f)
 A priori fluxes (E") → Bayesian a posteriori E"

Spectroscopic considerations: DUAL

- Fundamental rovibrational transitions
- QCLs available at $\lambda > 4$ μm
- 4 species \rightarrow 3 DFB QCL required (CO₂, CO and CH₄)
- □ $[CO_2] >> [other species] \rightarrow$ **2 spectrometers:**
 - $\Box CO_2$ $\Box 2-QCL (CO, CH_4, N_2O)$
- QCLs at 7.8 µm perform better than at 4.6 µm → N_2O measured along with CH₄

- **CH**₄: υ_4 , P-branch
- □ N₂O: υ₁, P(11) or P(16)
- CO measured at (or near) highest S (R(7), 2172.76 cm⁻¹)

Spectroscopic considerations: CO₂

- CO₂ → most demanding fractional precision requirement (~0.01%)
- □ High stability → minimum $\partial S/\partial T$ rather than S_{max}
- Optimum at 2319.18 cm⁻¹
 (υ₃, P(34)) → 1/S·∂S/∂T ≈ 10⁻⁶ K⁻¹

Conceptual design

- Null method: dual beam, differential absorption (sample / reference)
- External paths matched
- Balanced detection → covariance removal (e.g. due to pulse-to-pulse and linewidth variations, and wavelength drift)
- □ Accuracy increases as $\Delta[CO_2] \rightarrow 0$
- Differential spectrum is optically thinner
- Cancellation of external interference fringes

QCL operation

- □ Pulsed (TEC) mode → short coherence length → weak (or non observable) fringes!
- Excitation with shortest possible pulses → max power and min chirping (pulses → $\Delta T \approx 0.2 \text{ K} \rightarrow \Delta v \approx 0.02 \text{ cm}^{-1}$)
- "Smallest" sub-threshold ramp (quadratic modulation)
- Direct absorption (harmonic detection not suitable)
- $\square Balanced detection \rightarrow covariance removal$

2-QCL spectrometer

- 1. Alignment mount for Schwarzschild objective (15X, 0.4 NA)
- 2. Wedged BaF₂ beam splitter
- 3. Light (AI), fast response ($\tau \approx 1$ s), astigmatic-mirror multipass cell (238 passes, 76 m pathlength)

4. LN₂-cooled dual MCT detector (D* ≈ 6.10¹⁰ cm Hz^{1/2} W⁻¹, NEP ≈ 3 nW)
 5. T-controlled enclosure (±0.1 K)
 6. Gas-T conditioner (heat exchanger)

CO₂ QCL spectrometer

- 1. QCL house
- 2. Electronics (pulse generator / bias-T)
- **3.** Aspheric AR ZnSe lens (15.5 mm ϕ , 13 mm f) in mount
- 4. CaF_2 beam splitter
- 5. 10-cm dual absorption cells ($\tau \approx 1$ s; wedged/tilted windows)
- 6. Diverting mirror
- 7. Actuator for diverting mirror
- 8. Etalon aiming flat mirror

- 9. 25-mm Ge etalon
- 10. LN₂-cooled dual InSb detector
 - (D^{*}¯≈ 9·10¹⁰ cm Hz^{1/2} W⁻¹, NEP ≈ 2 nW)
- 11. Sample absolute P-transducer
- 12. Differential P-transducer
- 13. Thermostated (±0.1 K) pressure vessel
- 14. Pressure vessel P-transducer
- 15. QCL house desiccant

Spectra

BG removed 1-Hz 2-QCL spectra 1.01 ¹²CH N.,O **_** 0.99 co Relative transmittance 0.98 0.97 Sample 0.96 LS PRI 0.95 HS 13CH 0.94 0.93 QCL B QCL A 2169 cm⁻¹ 1275 cm⁻¹ 0.92 0.1 0.4 0.5 0.6 0.2 0.3 Relative wavenumber [cm⁻¹]

- □ Cell pressure \approx 60 torr \rightarrow Voigt linewidth \approx QCL Δv ((5-17)·10⁻³ cm⁻¹ HWHM)
- □ Broad QCL LW \rightarrow linear response requires small OT
- Best performance → linewidth-power tradeoff
- Chirping noticeable on CO

- CO_2 differential spectra at 2313.16 cm⁻¹ (reference = 378.30 ppmv CO_2)
- □ Residuals ≈ 2.10⁻⁴ peakto-peak
- □ Absolute spectra absorptance $\approx 20\%$

Control systems

- □ Water removal prior detection (Nafion→trap) $\rightarrow \delta \rho < 0.01\%$
- Pressure controlled IN and OUT of absorption cells \rightarrow Absolute-P stability better than ±0.1 hPa
- Gas / spectrometers thermostated to ±0.1 K
- □ Boiled $LN_2 \rightarrow 2$ TAVCO values (±2 hPa) \rightarrow DC level stability

Stability

- □ Fractional precision → absorbance RMS < 3.10⁻⁵
- Short-term precision determined by QCL power (SNR) and linewidth
- Undetectable mode competition!
- Middle-term precision seems to be controlled by alignment drift (PVD nonlinearity artifact)
- Negligible proportional noise at atmospheric concentrations
- □ CO_2 precision and accuracy increases as $\Delta[CO_2] \rightarrow 0$

Calibration

FLT calibration BG (4-6 h⁻¹) LS/HS (2 h⁻¹) PRI (0.5-1 h⁻¹) PRI: mission-long "archive" gas Source / gas deck tanks calibrated in the laboratory before / after mission

Excellent linearity and precision over atmospheric range
 NOAA CO accuracy dominate residuals and obscure apparent non-linearity; CH4 non-linearity < 2.sigma

At a glance

- Ready for integration in NASA's WB-57 and Lear35a (BARCA 2007)
 Integration for HIAPER in
- Integration for HIAPER in preparation

- Precision:
 - \Box CO₂ < 100 ppb Hz^{-1/2}
 - □ CO⁻< 0.5 ppb Hz^{-1/2}
 - \Box CH₄ < 1 ppb Hz^{-1/2}
 - □ N2O < 0.1 ppb Hz^{-1/2}
- Calibrated with low span, high span and "archive" gases traceable to world standards
- Total weight < 150 kg (platform dependent)
- Power: 28 VCD or 3phase 115 VAC / 400Hz
- Power consumption: steady state = 700 W; peak = 1.8 kW

Conclusions and perspectives

- We have developed a dual-spectrometer instrument that fulfill the requirements for airborne measurements from the ground to the stratosphere
- **Stability, precision and accuracy maximized through:**
 - Operation wavelength selection
 - Optimized pulsed QCL operation
 - \square Balanced detection (null mode operation for CO₂)
 - □ Short coherence length minimizes interference fringes
 - □ Tight controls on temperature, pressure, flow and density
 - □ Frequent calibration with gases traceable to world standards
- Instrument provides excellent precision and linearity over the atmospheric concentration range
- Data processing algorithms will account for background (BG) discontinuity and PVD non-linearity
- Ready for integration on NASA's WB-57 and Lear35a (BARCA 2007); Integration in HIAPER in preparation (START 2008)

HU QCLS team

Acknowledgements

 Mark Zahniser for accepting to give an extra talk!

Harvard University: J. Munger, A. Bright,

D. Curran, J. Budney, J. Demusz, M. Witinski, T. Martin, M. Rivero

Aerodyne Research: D. Glenn, J. Mullholland, P. Kirwin

Alpes Lasers

Funding:

- DOE/STTR
- DOE/SBIR
- NSF/MRI
- NASA