transport & mixing of chemical airmasses in idealized baroclinic lifecycles

Gavin ESLER & LMP

- synoptic scale eddies important for transport (tracers and water vapor) in the atmosphere
- a lot of work has been done, on lifecycle dynamics...
 - early work of Hoskins & Simmons (70's and 80's)
 - Thorncroft, Hoskins, McIntyre (QJRMS, 1993)
 - Hartmann et al (1998, 2000) & others
- ... but little work on transport/mixing in lifecycles (only a couple of papers in the literature!)

- transport/mixing from large-scale advection alone?
 - across the tropopause (either way)
 - from boundary layer into the stratosphere
- transport/mixing in LC1 vs LC2 lifecycles?
 - ENSO and NAO change ratio of LC1/LC2's
 - so what happens to the transport/mixing?
- what do the mixing airmasses look like? differences between LC1 and LC2?

lifecycle "paradigms"

[θ on 2 PVU surface, from Thorncroft, Hoskins & McIntyre, 1993]

what do the airmasses look like?

Thorncroft, Hoskins & McIntyre (1993)

- "dry intrusion"
- "warm conveyor belt"
- this is only a sketch
- can we compute it?

initial u and θ

- initial conditions very similar to Thorncroft et al (1993)
- but... analytically specified here (hence reproducible)
- model top @ 30 km (tropopause in middle of domain)
- levels equally spaced in z not σ

PV on θ = 335 K (day 8)

- we solve dry, adiabatic primitive equations
- in spherical geometry with m = 6 symmetry
- we compute at: T42L30 & T85L60 & T170L120
- T170L120: $dx = dy = 0.7^{\circ}$ & dz = 250 m

what do the airmasses look like?

Thorncroft, Hoskins & McIntyre (1993)

- "dry intrusion"
- "warm conveyor belt"
- this is only a sketch
- can we compute it?

initializing tracers as airmasses

- all tracers have values 1 or 0 at initial time
- define $S = S_1 + S_2 + S_3 + O$ and $T = T_1 + T_2 + T_3 + U = 1 S$
- define the tropopause as S = 1-T = 0.5 for all times

quantifying mixing

- using tracers to define the tropopause allows for simple & natural definitions of transport
- no need to worry about the shape of tropopause!
- e.g. lower troposphere \rightarrow stratosphere

$$T_1 \to \mathcal{S} = \int_{\mathcal{S}} T_1 \,\rho \, dV$$

• very easy to compute in practice

middleworld airmasses θ = 335 K

- blue: stratospheric air (S>0.9)
- red: tropospheric air (S<0.1)
- white'ish: mixed air
- black lines delimit the the mixing zone (SxT > 0.1)
- mixing zone is narrow for LC1 and broad for LC2
- expect more mixing for LC2 than for LC1
- mixed air is red implying bigger S → T

two-way cross-tropopause transport

- $S \rightarrow T$ greater for LC2 by about 50%
- $T \rightarrow S$ about same for both
- these results independent of resolution

T170L120

LC1

a .,

 $\mathcal{S}_{\mathcal{R}}$

Ф.

08

day 8

LC2

IBTE

T170L120 dlat, dlon = 0.7° and dz = 250m

T42L30

INTE

тś°е

T42L30 dlat, dlon = 2.8° and dz = 1km

BL and stratospheric air on 300K

largest mixing occurs in the cyclones

BL and stratospheric air on 300K

largest mixing occurs around cyclones

reality check...

- courtesy of NOAA
- SeaWiFS image
- taken 31 August 2000
- over the North Atlantic

mixing of BL and stratospheric air

$$M_{BS} = \int_{\mathcal{A}} B_0 S \,\rho \, dV$$

- integral over whole atmos
- larger mixing for LC2 roughly by 30%
- amount of BL air uplifted in the free atmosphere is comparable for LC1 & LC2

$LC1 \rightarrow 3d$ view of BL and statospheric air

red \rightarrow BL air & blue \rightarrow stratospheric air airmasses are slotted together: separation artificial

- \rightarrow branches C and B appear first
- \rightarrow branch C is a sheet, branch D is a tube
- \rightarrow branch A appears at day 6.5

 $+60^{\circ}$

$LC2 \rightarrow 3d$ view of BL and statospheric air

red \rightarrow BL air & blue \rightarrow stratospheric air airmasses are slotted together: separation artificial

- \rightarrow branches C and B are the DOUBLE spiral
- \rightarrow branch D turns cyclonic
- \rightarrow branch A is completely absent

 $+60^{\circ}$

- Shapiro et al (2001) have shown that +ve ENSO is associated with increases in LC2/LC1
- Zeng & Pyle (2005) have shown increased O₃ of stratospheric origin in the troposphere for +ve ENSO
- our results provide the missing link
 - 1. +ve ENSO means more LC2
 - 2. more LC2s means more $S \rightarrow T$ transport
 - 3. and thus more strat O₃ in the troposphere

strat-trop exchange & climate change

- LC2 have deeper mixing regions than LC1
- LC2 / LC1 frequency change in future climate would then affect the thickness of the ExTL
- IPCC/AR4 suggests that SH jet will move poleward
- poleward jet is associated with more LC1s
- possibly thinner tropopause layer
- HIGHLY SPECULATIVE...

- stronger mixing in LC2 than LC1
- most mixing occurs in cyclones (even for LC1!)
- caveat: highly idealized results... (transport/mixing due to large scale advection alone)
- could be used to test numerical schemes of CTMs
- relative importance of diabatic process, convection, small scale turbulence, etc can now be assessed

thank you...

← a North Pacific cyclone from SeaWiFS

[paper in JGR, 2007]