Stratosphere-Troposphere Analyses of Regional Transport Experiment (START08)

Science Objective: Investigate transport processes that impact the chemical-microphysical distribution of the Ex-UTLS

Co-Principal Investigators: Elliot Atlas (Univ. of Miami), Kenneth P. Bowman (Texas A&M), Laura Pan (NCAR)

Co-Investigators:

External:
Linnea Avallone (CU)
James Elkins (NOAA)
Fred Moore (CIRES)
Dale Hurst (CIRES)
Steve Wofsy (Harvard
University)
Fuqing Zhang (Texas
A&M)

NCAR: Teresa Campos Andy Heymsfield Andy Weinheimer Frank Flocke Bill Randel Sue Schauffler Brian Ridley Britt Stephens Simone Tilmes

- April-June, 2008
- Flight operation from JeffCo
- Joint with HIPPO (global carbon)

START08 Information

- Motivations, brief history of project development
- Science questions & objectives
- People involved
- Payload & campaign dates
- Modeling effort
- Opportunities of collaboration

Project History

- START was planned by the UTLS initiative at NCAR, in collaboration with a group of university colleagues, for the HIAPER progressive science mission (2005) for test flights
- NSF declined the funding for University co-Is and suggested a full scale campaign proposal in a later date
- A limited payload START was conducted by NCAR scientists (Dec 05)
- A proposal for START08 with a moderate payload developed over the last two years, lead by a joint PI group (Pan, Atlas, Bowman, Zhang...)
- NSF LA program suggested a joint payload/operation with Pre-HIPPO (Wofsy). The PI groups considered the payload overlap and flight pattern consistency and agreed to the joint operation

Motivations and general questions

- In the Ex-UTLS region, multi-scale dynamics (i.e., stratospheric circulation and tropospheric weather systems), coupled with chemistry, controls and redistributes a suite of radiatively significant species (Ozone, Water vapor, particles...)
- How well is the new generation of CCMs representing this region and predicting the coupling of dynamics and chemistry in a changing climate?
- Process-oriented validation for the CCMs the need for diagnostics that are observables – flux is not an observable, tracer-tracer correlations are, so is the age spectrum – need for a climatology in the UTLS region, also a theoretical framework
- Need for a new paradigm what controls and defines the boundary between the stratosphere and troposphere? The perspective of chemical and microphysical behavior of the tropopause
- The need of HIAPER platform/instrumentation development (after the "no-go" for TC4 participation) – we need exercise to put chemistry instruments on the plane
- Also need for experience of challenging flight patterns can we probe convective anvils?

Primary Science Objective: Investigate transport processes that impact the chemical-microphysical distribution of the EX-UTLS

Long range transport

Convective transport

Primary Science Objective: Investigate transport processes that impact the chemical-microphysical distribution of the EX-UTLS

- Understanding the Ex-Tropopause
 - Is the extratropical tropopause better characterized as a surface or a layer? ExTL?
 - If a layer, how do we identify/define it? What controls its existence/depth?
- The behavior of the secondary tropopause
 - What dynamical processes contribute to the occurrence of 2ndry tropopause?
 - What's the chemical transport processes associated with multiple tropopauses?
 - What are the microphysical behavior of the region of multiple tropopauses?
- Key transport pathways
 - Where are the preferred locations of STE and mixing?
 - How do we identify the convective impact to UTLS air mass?
 - What are the key tracer relationships that identifies these pathways?

Signature of the key pathways in ozone climatology

Microphysical implications of the secondary tropopause?

Noel and Haeffelin, 2007

Figure 5. (a) Backscattering coefficients observed by the LNA lidar on 17 March 2005 as a function of time and altitude, using a logarithmic color scale. (b) Temperature profile from radiosoundings on 17 March 2005. On both figures, the first two tropopauses are indicated using dashed lines.

Objectives (con.)

• Role of gravity waves in the structure and composition of ExUTLS

- How well does the current generation of mesoscale models predict the excitation of GW by jet/fronts?
- How often do GW break in the ExUTLS and what is the evidence in tracer measurements for the contribution of GW breaking to mixing?

START05

- The concept of START08 was tested during START05
- Three publications up to date, highlights what we can learn with this new aircraft, in the Ex-UTLS region

Chemical behavior of the extratropical tropopause

Pan et al., 2007

Fine scale structure near a hyperbolic point Ozone for 12-09 18:40Z to 21:27Z

New particle formation in the tropopause fold

Young et al., 2007

YOUNG ET AL.: MIDLATITUDE TROPOPAUSE NEW PARTICLE FORMATION

What more do we expect for START08?

Example: Age spectrum based on Tracers of different lifetimes

Ehhalt et al., 2007

Figure 3. Vertical profiles of CHCl₃, CO, C_2H_6 , C_2H_2 , C_3H_8 , and $n-C_4H_{10}$ in the lower stratosphere with CF₂Cl₂ as the height scale from flight 20. The definition of the symbols is the same as in Figure 1. Samples collected during descent are represented by larger symbols. The straight lines represent fits of exponential functions to the data collected during descent. The respective scale heights are given in Table 1. The red

Modeling and Satellite Data Effort

- Global MOZART-3/WACCM (Simone Tilmes, Doug Kinnison, Andrew Gettelman ...)
- High res CLaMS (Paul Konopka and colleagues, Bill Hall)
- Theoretical/idealized (GCM with baroclinic life cycle study, Lorenzo Polvani)
- MM5/WRF (Fuqing Zhang)
- WRF-Chem (ACD, ...)
- Trajectory model (Ken Bowman)
- Satellite data (AIRS ozone and water vapor, AURA data? HIRDLS group?)

Instrument	Data product		
HAIS Twin QCL	High resolution CO, CO ₂ , CH ₄ , N ₂ O		
HAIS AWAS	Grab sampling: NMHC, HCFC, RONO ₂ , etc., etc.		
PANTHER GC/MS	Medium resolution: selected trace gases (OCS, MeI, etc.)		
UCATS	GC analysis:N ₂ O/SF ₆ /H ₂ /CO/CH ₄ ; continuous O ₃ & H ₂ O		
HAIS UV O ₃	1 Hz ozone measurement		
NCAR NO/NO _y	High resolution NO, NO _y		
RAF TDL H ₂ O	High resolution H ₂ O		
HAIS SID-2	Small ice particle detector		
HAIS MTP	Atmospheric temperature structure		
CU-CLH	Total water measurement; thin cloud detection		
NCAR O ₂ :N ₂	Measure of O ₂ :N ₂ ratio		
RAF CN	Condensation nuclei count		
RAF Particle Probes	FCAS, FSSP, 2D-C		
HAIS VCSEL (optional)	High resolution, fast H ₂ O		
RAF Fast O ₃ (optional)	High resolution O ₃		
VUV-CO (Harvard) (optional)	High resolution CO		

START08: Measurements

Instrument/Model	Data product	Mission Objective
HAIS Twin QCL	High resolution CO, CO2, CH4, N2O	Tracer studies
HAIS AWAS	Grab sampling: NMHC, HCFC, RONO2, etc., etc.	Tracer studies
PANTHER GC/MS	Medium resolution: selected trace gases	Tracer studies
UCATS*	GC analysis:CO/CH4; continuous O3 – H2O	Tracer studies
HAIS O3	1 Hz ozone measurement	Strat-trop mixing
NCAR NO/NOy	High resolution NO, NOy	Strat-trop mixing, convective NO sources
RAF TDL H2O	High resolution H2O	Microphysics, strat- trop processes
HAIS SID-2	Small ice particle detector	Cirrus microphysics
HAIS MTP	Atmospheric temperature structure	Strat-trop processes; tropopause location
CU-CLH	Total water measurement; thin cloud detection	Microphysics, strat- trop processes
NCAR 02:N2	Measure of O2:N2 ratio	Strat-trop exchange; carbon cycle objective

Optional: NCAR Fast O₃ and CO

START08: Satellite data and Modeling

Model MOZART3/WACCM

MM5/WRF

WRF-Chem

CLaMS

Trajectory Model TRAJ3D

Satellite Data

Satellite Data

Satellite Data

Data product

Global scale model

High resolution regional model

High resolution regional model with chemistry

Lagrangian chemical transport model

Air mass trajectories

AIRS High Resolution Ozone&Water

AURA/HIRDLS

CALIPSO

Mission Objective

Flight planning/post mission analyses Flight planning/post mission analyses

Tropopause mixing processes

Source characterization/ transport pathways Flight planning/post

mission analyses

Trace gas distributions

cirrus cloud

Flight Resources/Operation

- 120 flight hours, 15 x 8 hr flights
- April 21-May 16, June 16-June 28
- Based at JeffCo airport

A few actions planned...

- We plan to have a workshop at NCAR Jan 2008
- A mailing list will be created for all who are interested
- A website will be created to update the information

Opportunities of collaboration

Thought starters...

- From the point of future campaign June flights are planned to probe convective anvil – Forecast experiment for DC3 campaign?
- Expanding the impact of the in situ observations by satellite data- what would HIRDLS see?
- Model diagnostics how well our multi-scale models at NCAR represents these dynamical, chemical and microphysical processes ?

• ...

Thank You !

SHADOWS OF MONUMENT VALLEY - FLIGHT 051209