Residual Circulation and Tropopause Structure

submitted to JAS

Thomas Birner

Department of Atmospheric Science Colorado State University

What is the effect of the (stratospheric) residual circulation on lower stratospheric static stability and tropopause structure?

Background

- Stratospheric residual (~ Brewer-Dobson) circulation tends to: lift tropical tropopause and lower extratropical tropopause
 - → By how much?
- Lower stratospheric static stability exhibits characteristic vertical structure (~ tropopause inversion layer, TIL)
 - → To what extent is this structure related to the residual circulation?

Tools

- Canadian Middle Atmosphere Model (CMAM): comprehensive CCM, T47L71, i.e. vertical resolution near tropopause ~ 1 km
- ERA40 on model levels (T159L60), vertical resolution similar to CMAM near tropopause
- Only CMAM results will be shown here, but all results are consistent between CMAM and ERA40.
- Column Radiation Model (CRM): stand-alone radiative transfer code out of NCAR CCM3.

Static Stability (N²) & Residual Streamfunction (seasonal zonal means)

- → enhanced N² just above the (global) tropopause
- tropopause inversion layer (TIL)
- → note vertical structure of residual circulation near the tropopause

Transformed Eulerian (~ Residual) Mean Thermodynamic Equation

$$\partial_t \overline{\Theta} + \overline{w}^* \partial_z \overline{\Theta} + \overline{v}^* \partial_y \overline{\Theta} \approx \overline{Q}$$

Residual Vertical & Meridional Velocities

Diabatic Heating (mainly radiative in the stratosphere)

form equation for $\overline{N^2} = g\overline{\Theta}^{-1}\partial_z\overline{\Theta}$:

$$\partial_t \overline{N^2} \approx -\partial_z (\overline{w}^* \overline{N^2}) - g \partial_z (\overline{v}^* \overline{\Theta}^{-1} \partial_y \overline{\Theta}) + g \partial_z (\overline{\Theta}^{-1} Q)$$
 Vertical structures usually

small

of both, w* and N² are important!

Forcing due to Residual Circulation

Θ - Heating Rates(K/day)

Static Stability Forcing (10⁻⁵s⁻²/day)

- dark/light shading: values above/below ±0.4 K/day (left), above/below ±0.3·10⁻⁵s⁻²/day (right)
- dominant contribution (with few exceptions) comes from vertical residual velocity contribution

Forcing due to Residual Circulation

Θ - Heating Rates (K/day), DJF

$$-\overline{v}^*\partial_y\overline{\Theta}-\overline{w}^*\partial_z\overline{\Theta}$$

- Tropical Upwelling
- Extratropical Downwelling
 - Localized subtropicalupper troposphericwarming maximum
 - double tropopause formation?

(slight) cooling @ subtropical edges of tropical TP is due to meridional contribution!

Note vertical structure near tropopause!

Forcing due to Residual Circulation

$$-\partial_z(\overline{w}^*\overline{N^2}) - g\partial_z(\overline{v}^*\overline{\Theta}^{-1}\partial_y\overline{\Theta})$$

Large negative forcing in subtropical uppermost troposphere

(combined effect of vertical and meridional contribution)

double tropopause formation?

Dipole structure of positive forcing just above TP (due to w^{*}) and negative forcing just below TP (due to ▼*)

 $-\partial_z(\overline{w}^*\overline{N^2}) - g\partial_z(\overline{v}^*\overline{\Theta}^{-1}\partial_y\overline{\Theta})$ Static Stability Forcing (10⁻⁵s⁻²/day), DJF

pronounced forcing structure everywhere around the tropopause

Stratospheric Radiative Equilibrium (SRE) Solutions:

- constrain tropospheric climate to the one simulated by CMAM
- •perform off-line radiative transfer calculations (clear-sky, using CRM) to obtain stratospheric temperatures in radiative equilibrium given CMAM's tracer distribution

Stratospheric Circulation-Radiation (SCR) Solutions:

 add circulation-induced heating rates to above radiative calculations

How do the resulting tropopause height and lower stratospheric static stability compare to CMAM?

Stratospheric Radiative Equilibrium Temperature Perturbation T_{rad} - T_{CMAM}

- → expected warm/cold dipole structure between tropics and extratropics
- → much lower tropical tropopause in SRE (~3-4 km), somewhat higher extratropical tropopause (~1-2 km)

Stratospheric Radiative Equilibrium Static Stability (N²) Structure

- → note strongly reduced N² in winter polar regions due to polar night (no strat. dynamical heating)
- → tropical TIL weakened compared to CMAM

Circulation-Radiation Solution Static Stability (N²) Structure

- → note good agreement between circulation-radiation tropopause (dotted) and CMAM's tropopause (full)
- → much stronger tropical TIL than in SRE solution

Conclusions

- Stratospheric residual (Brewer-Dobson) circulation strongly enhances equator-to-pole contrast in tropopause height (by ~ factor of 2 compared to a stratosphere in radiative equilibrium)
- Dipole structure of strongly positive (negative) static stability forcing just above (below) the mid-latitudinal tropopause in winter effectively sharpens tropopause and appears to cause TIL there
- Forcing structure in subtropical upper troposphere should favor formation of double tropopauses

