The tropopause inversion layer and its link to the mixing layer

Anne Kunz¹² P. Konopka¹, R. Müller¹, L. L. Pan³, C. Schiller¹, F. Rohrer²

Forschungszentrum Jülich ICG1: Stratosphere¹/ ICG2: Troposphere²

National Center for Atmospheric Research Boulder, Colorado, USA³

October 19, 2009 Community workshop at NCAR, Boulder, CO

Zonal and time mean static stability N^2

- Brunt-Vaisala Frequency squared: $N^2 = \frac{g}{\theta} \cdot \partial_z \theta$
- ECMWF operational data ($\Delta_z^{\rm TP} \sim 0.8-1.4\,{\rm km})$ at SPURT flight days

ヘロン 人間 とくほとう ほとう

э

ZONAL AND TIME MEAN TEMPERATURE AND STATIC STABILITY

Poleward intensification of the TIL

• BIRNER (2002): TIL as result of the two effects of warming in the LS due to subsidence and cooling in the UT due to baroclinic eddies.

- BIRNER (2002): TIL as result of the two effects of warming in the LS due to subsidence and cooling in the UT due to baroclinic eddies.
- WIRTH (2003): Enhanced stability in the LS as feature of anticyclonic upper-tropospheric flow. TIL as result of this anticyclonic influence

- BIRNER (2002): TIL as result of the two effects of warming in the LS due to subsidence and cooling in the UT due to baroclinic eddies.
- WIRTH (2003): Enhanced stability in the LS as feature of anticyclonic upper-tropospheric flow. TIL as result of this anticyclonic influence
- **BIRNER** (2006): TIL could result from large-scale poleward heat fluxes (associated with deep extratropical baroclinic eddies)

- BIRNER (2002): TIL as result of the two effects of warming in the LS due to subsidence and cooling in the UT due to baroclinic eddies.
- WIRTH (2003): Enhanced stability in the LS as feature of anticyclonic upper-tropospheric flow. TIL as result of this anticyclonic influence
- **BIRNER** (2006): TIL could result from large-scale poleward heat fluxes (associated with deep extratropical baroclinic eddies)
- RANDEL (2007): Radiative effects of ozone and water vapor near the tropopause may contribute a substantial component to forcing and maintenance of the TIL

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

- BIRNER (2002): TIL as result of the two effects of warming in the LS due to subsidence and cooling in the UT due to baroclinic eddies.
- WIRTH (2003): Enhanced stability in the LS as feature of anticyclonic upper-tropospheric flow. TIL as result of this anticyclonic influence
- **BIRNER** (2006): TIL could result from large-scale poleward heat fluxes (associated with deep extratropical baroclinic eddies)
- RANDEL (2007): Radiative effects of ozone and water vapor near the tropopause may contribute a substantial component to forcing and maintenance of the TIL
- IS THERE ANY RELATIONSHIP BETWEEN THE MIXING AND THE HIGH STATIC STABILITY ABOVE THE EXTRATROPICAL TROPOPAUSE?

SPURT

TRACE GAS TRANSPORT IN THE TROPOPAUSE REGION

- 8 campaigns: 11/2001–07/2003
- 36 flights
- 28°N 80°N
- Ceiling altitude: 13.5 km

STATIC STABILITY&MIXING

FDH CALCULATIONS

SUMMARY

SPURT CASE STUDY: KIRUNA – HOHN (27.04.2003)

Two types of mixed air masses:

- 1. Above the thermal tropopause within the TIL with enhanced N^2
- 2. In the vicinity of the jet with little enhanced N^2 compared to tropospheric values

(日)、(同)、(日)、(日)

O₃-CO correlation of all SPURT data

1. TIL BRANCH:

- Above thermal tropopause $\mathrm{TP}_{\mathrm{th}}$
- High static stability (N² > 5 $\cdot 10^{-4} \, \mathrm{s}^{-2}$)
- Tropopause vicinity (DTP < 30K)

2. TFM BRANCH:

- Fresh mixing events (air from the Troposphere)
- Between dynamical $\mathrm{TP}_{\mathrm{dyn}}$ and thermal tropopause $\mathrm{TP}_{\mathrm{th}}$

SPURT CASE STUDY (27.04.2003): CLAMS 10 DAY BACKWARD TRAJECTORIES

 10 day trajectories of the TFM and TIL branches are within the midlatitudes

Mean 10 day backward trajectories from the TIL and TFM branch

- Trajectories in the midlatitudes between 35–70 $^{\rm o}{\rm N}$
- Nearly isentropic transport: TIL branch \approx 330–340K, TFM branch \approx 310–320K

 N^2 : TIL branch $\approx 3.5\text{--}5.5\cdot10^{-4}\text{s}^{-2}$, TFM branch $\approx 1.0\text{--}4.0\cdot10^{-4}\text{s}^{-2}$

(日)、

TEMPORAL VARIANCE ANALYSIS OF N^2 DURING SPURT

- TFM BRANCH: Synoptic time scale (up to 8 days)
- TIL BRANCH: Seasonal time scale (around 90 to 360 days)

э

ECMWF mean H_2O and O_3 at $60^{\circ}N$

- Consistent perturbation of H_2O and O_3 in the same altitude region by taking into account their correlation in the UT/LS.
- What is the impact of the perturbation on the temperature and N^2 above the tropopause?

(日)、

FDH TEMPERATURE AND N^2

Mixing near the tropopause leads to:

- Temperature reduction (18K) and development of an inversion
- N^2 enhancement $(2.1\cdot 10^{-4}\,\mathrm{s}^{-2})$ and development of the TIL

In case of non-mixed profiles the TIL vanishes

RESULTS

- SPURT observations suggest a link between the TIL and the mixing layer in the extratropics. (Kunz et al. 2009, JGR)
- The mixing layer contains two types of air masses: TIL branch and TFM branch.
- Processes playing a role within the TIL may be on a seasonal rather than a synoptic time scale.
- FDH calculations substantiate the enhancement of N² with strengthened mixing. Radiative forcing may contribute to the maintenance of the TIL.

TROPOPAUSE INVERSION LAYER (TIL) STATIC STABILITY&MIXING FDH CALCULATIONS

SUMMARY

TROPOPAUSE INVERSION LAYER (TIL) STATIC STABILITY&MIXING FDH CALCULATIONS

SUMMARY

FDH TEMPERATURE AND N^2

+ $\rm H_2O$ is the major parameter in maintaining the temperature inversion and the TIL compared to $\rm O_3$

(日)

SPURT CASE STUDY (27.04.2003): MIXING LAYER RELATIVE TO THERMAL AND DYNAMICAL TROPOPAUSE

• Mixed air masses in the vicinity of the jet stream are mainly above the dynamical and below the thermal tropopause

イロト イポト イヨト イヨト

All SPURT data: Mixing layer relative to the thermal and dynamical tropopause

• TFM branch:

- Fresh mixing events (air from the Troposphere)
- Between the dynamical $\mathrm{TP}_{\mathrm{dyn}}$ and thermal tropopause TP