Development of bottom-up emission inventory for vehicle fleet in Ho Chi Minh City to assess potential co-benefits to air quality and climate

Huynh Hai Van and Nguyen Thi Kim Oanh

Environmental Engineering and Management Program School of Environment, Resources and Development, Asian Institute of Technology, Paholyothin Highway Km. 42, Klong Luang, Pathumthani 12120, Thailand Email: jackiehuynh1990@gmail.com & kimoanh@ait.ac.th

ntroduction

Traffic contribute a substantial amount of emissions of air pollutants and climate forcing agents, both long-lived greenhouse gases and short-lived climate pollutants (SLCP). The traffic emissions, however are adequately quantified Asian for not developing cities.

This study conducted a bottom-up emission inventory for urban passenger fleet (buses, trucks, taxis, personal cars and motorcycles) and trucks in Ho Chi Minh City (HCMC), Vietnam, for 2013 and projected the emission under a scenario of faster Euro3 technology intrusion. The data collection and analysis were done using International Vehicle Emission (IVE) model (ISSR, 2008). The emission reduction under this scenario was quantified for toxic pollutants and climate forcers using GWP.

Low speed and high mileage of trucks and bus resulted in high running EFs of PM (2.2 g/km and 1.9 g/km, respectively) and NOx (13.1 and 10.2, respectively). Gasoline powered fleets of personal car, motorcycle and taxi had high EFs of CO (39.3 g/km, 24.2 g/km, and 27.6 g/km, respectively) and VOC (1.5 g/km, 4.1 g/km and 2.8 g/km, respectively).

Table 2: Annual emission of air pollutants and GWP (CO_2 eq. 20 year horizon)

Conduciona		$C_{\text{recise}}(C_{\text{r}})$	Base case		Scenario (Euro3)			Scenario at least Euro3 standard
CONCIUSIONS		Species (Gg)	Pollutants	CO ₂ eq	Pollutants	CO ₂ eq	Reduction %	
Within each fleet, the	make the fleets the	CO	1,274.8	7,649.0	545.26	3,271	57.2	
vehicles with high	largest contributors to	VOC (exh+evap)	189.0	2,646.2	108.68	1,521	42.5	CLIMATE CHANGE
mileage and without	emission of these	NOx	99.0	1,295	42.56	556.99	57.0	NUMAR- 18-LIS
emission controls had	pollutants.	Sulfate	1.8	-258.4	1.01	-141.07	45.4	
higher EF.		PM	12.9	-	5.19	-	59.77	
	◆Faster Euro3	BC	3.7	11,716	1.13	3,620	69.10	
♦ MC large fleet had	intrusion would bring in	OC	7.5	-1,793	3.74	-897.27	49.97	55% 42%
the largest emissions of	substantial reduction of	CO ₂	10,722	10,723	10,445	10,445	2.6	
	toxic air poliutant	N ₂ O	0.5	132.3	0.43	125.03	5.5	
High EE for DM and	emission (55%) and		33.0	2,374.5	20.10	1,447	39.1	
NOv from the diesel	climate forcing (42%)	Air toxics *	<u>ک</u> ۲.4	-	15.52	-	43.3	*: (Air toxics include 1,3-Butadiene, acetaldehyde,
nowered truck and bus		CO_2 , N_2O	^d 1,644.9		742.6		54.9	formaldehyde and benzene)
		Total GWP		34,485		19,950	42.1	
)	
References Used Van, H. H. (2014). Development of Emission Inventory for Vehicle Fleet in Ho Chi Minh City to Estimate Environment and Climate Co-benefit of Faster Technology Intrusion (Master research study No. EV-11- 15, Asian Institute of Technology, 2011). Bangkok: Asian Institute of Technology						NN NN SA	UTE OF 1959	

