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Key PointsKey Points  EFs of VOCs from Chinese crop residue burning were measured in laboratory experiments
 EFs from the burning of both dry and wet samples were determined
 Residual moisture in crop residues suppressed VOC emissions from the burning 

AbstractAbstract The emission factors (EFs) of non-methane volatile organic compounds (NMVOCs) emitted during the burning of Chinese crop residue were investigated
as a function of modified combustion efficiency (MCE) in laboratory experiments. NMVOCs, including acetonitrile, aldehydes/ketones, furan, and aromatic
hydrocarbons, were monitored by proton-transfer-reaction mass spectrometry (PTR–MS). Rape plant was burned in dry conditions and wheat straw was
burned in both wet and dry conditions to simulate the possible burning of damp crop residue in regions of high temperature and humidity. We compared
the present data to field data reported by Kudo et al [2014] Good agreement between field and laboratory data was obtained for aromatics under

IntroductionIntroduction Objectives

Experimental Setup

the present data to field data reported by Kudo et al. [2014]. Good agreement between field and laboratory data was obtained for aromatics under
relatively more smoldering combustion of dry samples, but laboratory data were slightly overestimated compared to field data for oxygenated VOC
(OVOC). When EFs from the burning of wet samples were investigated, the consistency between the field and laboratory data for OVOCs was stronger
than for dry samples. This may be caused by residual moisture in crop residue that has been stockpiled in humid regions. Comparison of the wet
laboratory data with field data suggests that Kudo et al. [2014] observed the biomass burning plumes under relatively more smoldering conditions in which
approximately a few tens of percentages of burned fuel materials were wet.
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Figure 1.Figure 1. (Upper panel) (Upper panel) 
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depth by MODIS/Aqua depth by MODIS/Aqua 
during the during the campaign;campaign;
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•• Determination of EFs of NMVOCs from the BB of Chinese crop residues in Determination of EFs of NMVOCs from the BB of Chinese crop residues in 
Laboratory Laboratory EExperiments xperiments 

•• Comparison of EFs: Comparison of EFs: Laboratory Experiments Laboratory Experiments vs. Field Measurements vs. Field Measurements 
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Wheat straw Wheat straw bburning in May/Juneurning in May/June
Rice straw Rice straw bburning in Octoberurning in October

((Lower panel) Land cover Lower panel) Land cover 
type map associated with type map associated with 
fire spots (red dots) fire spots (red dots) 
detected by MODIS/Aqua detected by MODIS/Aqua 
and Terra on 16 June 2010. and Terra on 16 June 2010. 

KudoKudo et alet al., [2014]., [2014]

Figure Figure 2.2. Temporal variations Temporal variations 
of OVOCs (isoprene/furan, of OVOCs (isoprene/furan, 
acetaldehyde, acetaldehyde, 
acetone/acetone/propanalpropanal, acetic acid, , acetic acid, 
MVK/MACR, and MVK/MACR, and 
MEK/MEK/butanalbutanal) (upper panel), ) (upper panel), 
alkanesalkanes (ethane and (ethane and 
propane) and alkenes propane) and alkenes 
((etheneethene and and propenepropene) (middle ) (middle 
panel), and aromatics panel), and aromatics 
(benzene, toluene, C(benzene, toluene, C88--
benzenes, and Cbenzenes, and C99--benzenes) benzenes) 
(lower panel) in (lower panel) in RudongRudong in in 
June 2010. The gray areas June 2010. The gray areas 
denote seven events heavily denote seven events heavily 
impacted by BB emissions.impacted by BB emissions.

Field Measurement of NMVOCs Field Measurement of NMVOCs 
 Location:Location: RudongRudong town town 

······rrural site, 100 km north of Shanghaiural site, 100 km north of Shanghai

 Period: Period: June 2010June 2010

 BB plumes were often measured BB plumes were often measured 
···grey areas in Figure 2···grey areas in Figure 2

 Typical crop residues:Typical crop residues:
Wheat StrawWheat Straw Rape PlantRape Plant

RudongRudong
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m/z Compounds
MID-setting DL

a A B (ppbv)
21 Primary (H3

18O+) 0.2 0.2 0.2
30 Primary (NO+) 0.05 0.05 0.05
31 Formaldehyde 0.1 0.1 0.1 0.89
32 Primary (O2

+) 0.05 0.05 0.05
33 Methanol 0.05 0.05 0.05 1.9
37 Primary (H+(H2O)2) 0.05 0.05 0.05
42 Acetonitrile 0.1 0.1 - 0.66
45 Acetaldehyde 0.1 0.1 - 0.40
47 Formic acid - 0.1 - 1.7

59
C3 saturated aldehyde/ketone 
(Propanal/Acetone)

0.1 0.1 -
0.29

61 Acetic acid/Glycolaldehyde 0.1 0.1 - 0.58
69 Furan/Isoprene 0.1 0.1 - 0.25

71
C4 unsaturated aldehyde/ketone 
(MACR/MVK)

0.1 0.1 -
0.23

73
C4 saturated aldehyde/ketone 
(Butanal/MEK)

0.1 0.1 -
0.22

75 Propionic acid 0.1 0.1 - 0.17
79 Benzene 0.1 0.1 - 0.14
83 Methylfuran - - 0.1 0.25
85 C5 unsaturated aldehyde/ketone 0.1 0.1 - 0.13
87 C5 saturated aldehyde/ketone 0.1 0.1 - 0.14
93 Toluene - - 0.1 0.28
97 Dimethylfuran 0.1 0.1 - 0.15
99 C6 unsaturated aldehyde/ketone - - 0.1 0.13

101 C6 saturated aldehyde/ketone - - 0.1 0.12
107 C8-benzenes - - 0.1 0.26
113 C7 unsaturated aldehyde/ketone - - 0.1 0.13
115 C7 saturated aldehyde/ketone - - 0.1 0.13
121 C9-benzenes - - 0.1 0.37
127 C8 unsaturated aldehyde/ketone - - 0.1 0.13

129
Naphthalene/C8 saturated 
aldehyde/ketone

0.1 0.1 -
0.10

135 C10-benzenes - - 0.1 0.08
179 Anthracene 0.1 - 0.2 0.06
203 Pyrene - - 0.2 0.02

Sum (s) 1.9 1.9 1.9

MCE ≥ 0.99 (Pure Flaming)MCE ≥ 0.99 (Pure Flaming)

MCE ~ 0.65‒0.85 (Smoldering)MCE ~ 0.65‒0.85 (Smoldering)

Results and Discussion
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Emission ratio to COEmission ratio to CO

Emission ratio to COEmission ratio to CO

EFEFXX (g/kg) = F(g/kg) = FCC ×× 1000 (g/kg) 1000 (g/kg) ×× MMMMX X (g)/MM(g)/MMC C (g) (g) ×× CCXX//CCtotaltotal

FC: the mass fraction of carbon in the fuel (assumed to be 0.5)
MMX: the molecular mass of compound X 
MMC: the molecular mass of carbon (12.011 g mol–1)
CX/Ctotal: the number of emitted moles of compound X divided by the total

number of moles of carbon emitted. 

CCXX//CCTotalTotal = = CCXX//COCO22//((nCnCYY ×× CCYY//COCO22) ) 

CX/CO2: the fire-averaged emission ratio (ER) of species X to CO2

nCY: the number of carbon atoms in compound Y
The sum is over all carbon-containing species including CO2, CO and CH4..

YokelsonYokelson et alet al., [1999]., [1999]
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Emission factors (EFs) of NMVOCsEmission factors (EFs) of NMVOCs
(A) OVOCs(A) OVOCs (B) Aromatics(B) Aromatics

●: Wheat straw (dry); 
○: Wheat straw (wet); 
▲: Rape plant (dry); 

×(air mass age: 0.8-0.9h): Field measurement at Rudong, China, in June 2010 
 (air mass age: 1.6-1.9h) ) (Kudo et al. [2014])
○(air mass age: 2.8-3.3h

Estimation of the fraction of wet Estimation of the fraction of wet 
sample in the field datasample in the field data

  iRS 2
F/L10 )(log

• A trend that the EFs increase as the MCE decreases was observed.
• There is no meaningful difference between the wheat straw (dry) and the rape plant (dry) samples.
• The EFs of wet wheat straw are low relative to those of dry wheat straw for OVOCs.
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Table Table 1. 1. Emission factors (g/kg) of NMVOCs from crop residue Emission factors (g/kg) of NMVOCs from crop residue burningburningaa

aThe values in parentheses represent the ranges of the data (+/‒ errors). The values in curly brackets are based on single data. bThis work. cKudo et al. [2014]. dLi et al.
[2009]. eZhang et al. [2013]. fStockwell et al. [2015]. gHatch et al. [2015]. hThe EFs may be underestimated due to the condensation of water vapor in the sampling tube. iThe
EFs are determined by extrapolation from the measured normalized excess mixing ratios (NEMRs) and photochemical ages to the values at an air mass age of 0. jThe MCE 
was estimated from the reported EFs of CO2 and CO. It was reported that the burning cycles were dominated by the flaming pattern. kThe value was derived from the EF of 
total NMHCs and the fraction of each compound.
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0 0.5 1
1

2

3

Fraction of wet samples (  )

only dry only wet

S
um

 o
f 
sq

ua
re

s 
o
f 
re

si
du

al
s 

( 
 )

f

S


i

RF/L(i) = (1‒f) × Rd
F/L(i) + f × Rw

F/L(i)

0

1

2

3

0

1

2

3

(a) Smoldering; Wheat, Dry

(b) Smoldering; Wheat, Wet

F
o

rm
al

de
hy

de

M
et

h
an

ol

A
ce

to
n

itr
ile

A
ce

ta
ld

e
hy

de

A
ce

to
ne

/P
ro

p
an

al

A
ce

tic
 a

ci
d

/G
A

Is
o

pr
e

ne
/F

ur
a

n

M
V

K
/M

A
C

R

M
E

K
/B

u
ta

n
al

B
en

ze
ne

T
o

lu
e

ne

C
8
−b

en
ze

ne
s

C
9
−b

en
ze

ne
s

3.4±3.5

4.2±3.9 6.2±4.0

10±7

F
ie

ld
/L

ab
F

ie
ld

/L
ab

 For flaming-dominant data, the field data for most OVOCs were smaller than the laboratory data.
 For relatively smoldering data, the field data were smaller than the laboratory data for OVOCs. 
 The underestimations for OVOCs were improved with wet samples.
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