

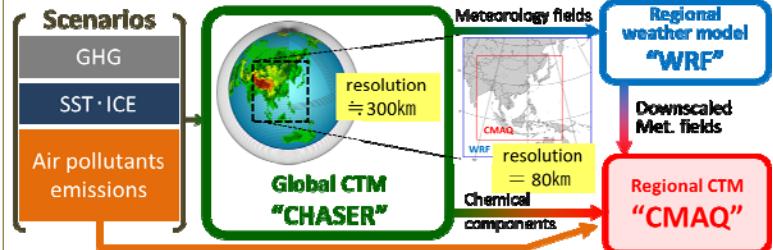
# Changes in the near future surface air quality in Asia under different future emission scenarios

Tatsuya Nagashima<sup>1</sup>,

Junichi Kurokawa<sup>2</sup>, Kengo Sudo<sup>3</sup>, Toshimasa Ohara<sup>1</sup>, Hajime Akimoto<sup>2</sup> (now 1)

For Further Information  
E-mail: nagashima.tatsuya@nies.go.jp




1) National Institute for Environmental Studies (NIES), Tsukuba, Japan; 2) Asia Center for Air Pollution Research (ACAP), Niigata, Japan;  
3) Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

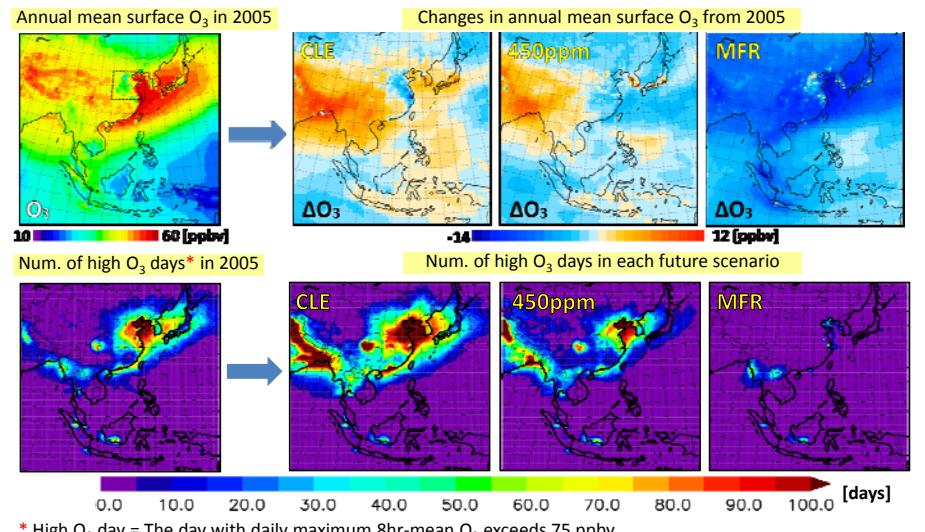


## Motivation

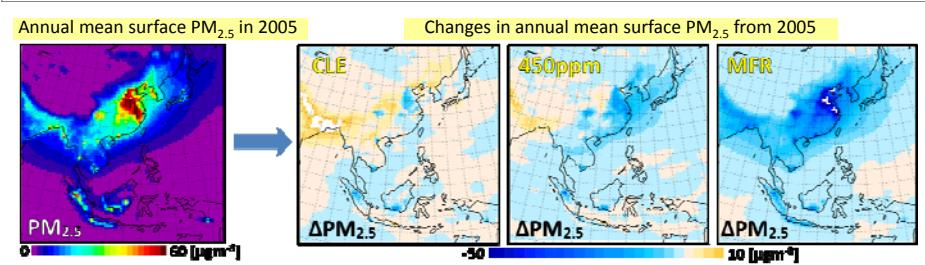
- Recently, Ozone( $O_3$ ) and aerosols ( $SO_4$ ,  $NO_3$ , OC or BC) have been called SLCPs (Short-Lived Climate Pollutants), because they are well-known air pollutants as well as have large radiative impacts in the atmosphere.
- Therefore, adequate control on the emissions of SLCPs (or their precursors) would bring both an improvement of air quality and a mitigation of rapid climate change; "SLCPs co-benefit".
- In order to estimate possibility of SLCPs co-benefit approach in East Asia, we examined several near future (2030) emission scenarios of SLCPs by using global and regional chemistry transport models.
- Here, we show the impacts of near future emission scenarios of SLCPs provided from IIASA (International Institute for Applied Systems Analysis) on the air quality in East Asia.

## Modeling system

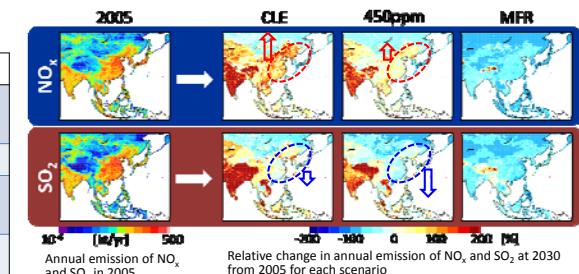



Input scenarios into global CTM to get global meteorology and chemical component fields, which are then downscaled with WRF/CAMQ system.

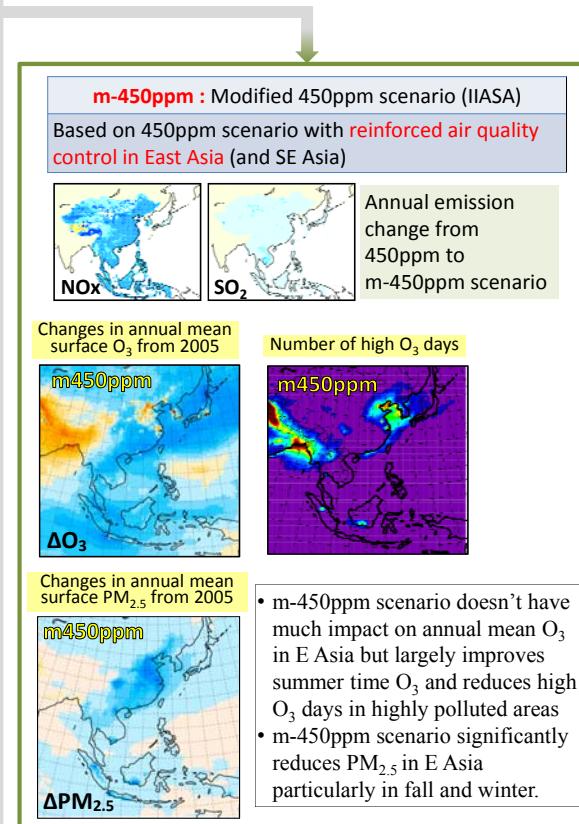
## Results


Three near future (2030) "reference" emission scenarios provided by IIASA

| Scenario name                                                            | content/remarks                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CLE</b><br>Current Legislation<br>(Cofala et al., 2006)               | Only consider the current (as of 2002) policy to reduce emissions of air pollutants <ul style="list-style-type: none"> <li>practical and needs minimum efforts to attain</li> </ul>                                                                                                                                         |
| <b>450ppm</b><br>CO <sub>2</sub> -eq 450ppm<br>stabilization (IEA, 2009) | Stabilize CO <sub>2</sub> -equivalent GHG mixing ratio at 450 ppm for global mean temperature not to exceed 2 C by peaking out GHG emissions until 2020. <ul style="list-style-type: none"> <li>developed by IEA(Intl. Energy Agency)</li> <li>considered as the standard scenario to elide fatal climate change</li> </ul> |
| <b>MFR</b><br>Maximum technically<br>Feasible Reduction                  | Adopt all technically feasible measures to reduce emissions of air pollutants regardless of their cost. <ul style="list-style-type: none"> <li>hard to attain</li> </ul>                                                                                                                                                    |


- Therefore, we tested the ability by comparing it with those of CLE and MFR scenarios which have been used in estimating the future air quality.




- 450ppm scenario doesn't entirely improve  $O_3$  pollution in E Asia and worsen those in S and SE Asia.
- The impact of future scenarios can appear in different way for different index (annual mean vs high  $O_3$  days)



- 450ppm scenario can bring some improvement in PM<sub>2.5</sub> pollution in E Asia, but the PM<sub>2.5</sub> in China or Korea is still above the AAQS of Japan (annual mean PM<sub>2.5</sub> < 15 µg/m<sup>3</sup>)



- 450 ppm scenario has been widely used in many researches to examine future GHG reduction .
- But its ability to improve air quality has not been examined well so far.



- m-450ppm scenario doesn't have much impact on annual mean  $O_3$  in E Asia but largely improves summer time  $O_3$  and reduces high  $O_3$  days in highly polluted areas
- m-450ppm scenario significantly reduces PM<sub>2.5</sub> in E Asia particularly in fall and winter.

Cofala, J., Amann, M., and Mechler, R. (2006): Scenarios of world anthropogenic emissions of air pollutants and methane up to 2030, IR-06-023, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.

IEA (2009). World Energy Outlook 2009, OECD/International Energy Agency, Paris, France.