Vertical Distribution and Columnar Optical Properties of Springtime Biomass-Burning Aerosols over Northern Indochina

Sheng-Hsiang Wang^{1,*}, Ellsworth J. Welton², Brent N. Holben², Si-Chee Tsay², Neng-Huei Lin¹, David Giles^{2,3}, Sebastian A. Stewart^{2,3}, Serm Janjai⁴, Xuan Anh Nguyen⁵, Ta-Chih Hsiao⁶, Wei-Nai Chen⁷, Tang-Huang Lin⁸, Sumaman Buntoung⁴, Somporn Chantara⁹, Wan Wiriya⁹

¹Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan; ²Goddard Space Flight Center, NASA, Greenbelt, Maryland, USA; ³Science Systems and Applications, Inc., Lanham, Maryland, USA; ⁴Department of Physics, Silpakorn University, Nakhon Pathom, Thailand; ³Institute of Geophysics, Vietnam Academy of Science and Technology, Hanoi, Viet Nam; ⁴Graduate Institute of Environmental Engineering, National Central University, Chung-Li, Taiwan; ³Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; ⁸Center for Space and Remote Sensing Research, National Central University, Chung-Li, Taiwan; ⁹Chemistry Department and Environmental Science Program, Faculty of Science, Chiang Mai, University, Chiang Mai, Thailand;

Motivation and Introduction

Northern Indochina is a region with a considerable amount of smoke aerosols because of the prevalence of man-made fires. In this study, we evaluated aerosol optical properties and vertical structure of biomass-burning aerosols over northern Indochina by using groundbased remote sensing data obtained from the 7-SEAS/BASELInE in 2014. We deployed one MPLNET lidar and four AERONET Sun-sky radiometers for the first time to characterize aerosol features over a region encompassing northern Thailand, Laos, and Vietnam.

9 AERONET sites + one MPLNET site are used

Figure 1. Topographic map with the location of AERONET sites in the study domain.

AOD, COD, and 700hPa wind over Southeast Asia in 2014

 $(a)^{2}$

AOD at 500nn

(b)

exponent 440/870

1.8

8 10

AOD₅₀₀ at four AERONET site over northern Indochina from at Doi Ang Khang from March 7 to

Figure 2. Maps of (a) 0.5°x0.5° gridded total fire counts, and (b) 1°x1° aerosol optical depth (shaded) and cloud optical depth (contour) at wavelength 550 nm obtained from the MODIS instrument aboard the Terra satellite during March 1 and April 15 2014 . The 1ºx1º NCEP reanalysis 925 hPa and 700 hPa winds (vector) are also shown in the figure.

"The high AOD over northern Indochina is due to the intense fire activities and the accumulation of aerosols"

"the presence of widespread smoke haze from ground-based measurements and satellitebased retrievals"

12 13 14 15 16 17

12 13 14 15 16 17 18

Hour (LT)

Hour (LT)

10 11

Figure 4. (a) mean aerosol extinction profile with stand deviation and (b) mean 3-hr

"Abundant fine mode (η_{500} of 0.96 and $\alpha_{440/870}$ of 1.72) mixture of black carbon and brown carbon particles (α_{abs} of 1.5) with strong absorption $(\omega_{440} \text{ of } 0.88)''$

Region	Fire Type	ω 440/675/870/1020 nm	abs440-870	α ₄₄₀₋ 870 [*]	η ₅₀₀ *	Reference
Northern	Forest and	0.88/0.87/0.85/0.84	1.5	1.8	0.95	this study
Indochina	agricultural					
Amazon	Forest	0.93/0.92/0.90/0.89	1.5	1.9	0.92	Giles et al. (2012)
Australia	Forest	0.85/0.83/0.82/0.81	1.4	1.5	0.79	Giles et al. (2012)
North America	Boreal Forest	0.95/0.96/0.96/0.95	1.8	1.5	0.96	Giles et al. (2012)
Africa	Savanna	0.87/0.83/0.80/0.77	1.2	1.9	0.92	Giles et al. (2012)
* calculated from AERONET inversion data set						

Figure 7. Daytime diurnal variability of (a) AOD at exponent (440-870nm) obtain from foui from March 1 to April 15, 2014.

aerosol extinction profiles in local time during March 1 and April 15, 2014.

0.92 (a) 0. 0.88 Single-scattering Albe 0.6 0.8 letry 0.6 0.8 0.82 Asvin 0.5 0. 0.5 0.45 0.8 0.67 0.87 Wavelength (µm) Wavelength (µm)

Figure 6. AERONET retrieval of aerosol optical properties, (a) single-scattering albedo, and (b) asymmetry factor as change with wavelength obtained from four sites over northern Indochina during March 1 and April 15, 2014.

"Slightly stronger absorption (ω_{440} of 0.86) is observed over the Thai-Laos valley"

Acknowledgements

This work was supported by the National Science Council of Taiwan under grants No. MOST 103-2111-M-008-006, 101-2119-M-008-012 and by the Taiwan EPA under contracts No. EPA-103-U1L1-02-101. The 7-SEAS, AERONET, MPLNET, project was supported by the NASA Radiation Sciences Program managed by Dr. Hal Maring. The authors thank the AERONET team for calibrating and maintaining instrumentation and processing these data. Thanks are also given to all assistants and graduate students involving in the site operation, data analysis and technical support for making 7-SEAS/BASELINE campaign successful.