INTRODUCTION

- At present, the Dobson spectrophotometer and Brewer spectrophotometer adopted by WMO, are used to measure total column ozone. Having strong absorption ability in the wavelength range of Dobson observation, SO₂ can interfere with the total ozone observation.
- Using the WOUDC observational data and absorption cross sections of O₃ and SO₂, SO₂ absorption coefficients and the theoretical factor C have been calculated to analyze the Dobson total ozone error caused by SO₂, which can provide reference for the data correction in Kunming station.

DATA & ALGORITHMS

- Bass-Paur (1985) ozone absorption cross sections (O₃CS).
- The WOUDC observational data derived from Dobson and Brewer spectrophotometer at New Delhi (India) and Hohenpeissenberg (Germany).

- The Dobson total ozone data can be corrected by:
 \[X' = X - C \cdot \delta \]
 where \(X' \) is corrected ozone amount; \(X \) is the apparent ozone amount; \(C \) is total SO₂.
 The SO₂ absorption coefficient \(\gamma(\lambda) \) has to be replaced by the slit function \(s(\lambda, \lambda_o) \) weighted effective absorption coefficient \(\gamma_i \):
 \[\gamma_i = \frac{\int \gamma(\lambda) s(\lambda, \lambda_o) d\lambda}{\int s(\lambda, \lambda_o) d\lambda} \]
 the ozone air mass and SO₂ air mass can be calculated as follows:
 \[n(\theta) = \frac{R + h_i}{[(R + h_i)^2 - (R + r)^2 \sin^2 \theta]^2} \]
 \[\mu(\theta) = \frac{R + h_i}{[(R + h_i)^2 - (R + r)^2 \sin^2 \theta]^2} \]

RESULTS

- SO₂ absorption coefficients

 ![Fig.1 Cross section of SO₂ and O₃ and their ratio (ρ)](image1)

 ![Fig.2 the monochromatic absorption coefficient γ(λ) and the effective absorption coefficient γ₁ of SO₂](image2)

- Bias in Dobson total ozone due to SO₂

CONCLUSIONS

- SO₂ has strong absorption in the UV spectrum, our calculation of SO₂ absorption coefficient \(\Delta \gamma AD \) is 1.843.
- The presence of SO₂ will lead to Dobson ozone amount that are higher than the actual values. Influence factor C has obvious seasonal variation that reaches a maximum in winter and a minimum in summer.
- At New Delhi, the false part of total ozone reaches a maximum of 13.7%, while at Hohenpeissenberg, the false part concentrates within 2% because of little amount of SO₂.
- The relative difference between Dobson and Brewer data sets decreases by 1~3%, it shows that the precision of Dobson data improves after correction.

ACKNOWLEDGMENTS

- We acknowledge the use of observational data from the WOUDC database. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41275045, 41305037, U11133603), the National Basic Research Program of China (Grant No. 2010CB428605).