ACE-FTS observations of short-lived reactive species in the UTLS

<u>Mijeong Park¹</u>, Bill Randel¹, Louisa Emmons¹, Shawn Honomichl¹, Peter Bernath², Kaley Walker², and Chris Boone² ¹ACOM/NCAR and ²ACE-FTS Science Team

Workshop on Dynamics, Transport and Chemistry of the UTLS Asian Monsoon March 7-10, 2016, NCAR Foothills Laboratory

Key Questions

- 1. Behavior of short-lived species in the UTLS region measured by ACE-FTS.
 - Influence of sources, convection and transport
 - Asian vs. North American monsoons

2. Comparison of ACE-FTS measurements with *in-situ* measurements and global model outputs. How much can we believe ACE-FTS?

Asian summer monsoon

Asian vs. N. American monsoons

(white contours – convection)

OVOCs (Oxygenated VOCs)

species	sources	sinks	lifetimes
O O	BB, NMHCs	OH	2 months
CH ₃ OH*	BB, Biogenic	OH, dry/wet	5-10 days
🙏 нсоон	BB, <mark>Biog</mark> , NMHCs	deposition	3-4 days
H ₂ CO	BB, NMHCs	OH	< 2 days

CH₃OH (methanol)

- the most abundant non-methane VOC
- source of CO and H₂CO
- precursor of tropospheric O₃

ACE-FTSv3.5 (2004-2013)

- Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a high spectral resolution infrared Fourier transform spectrometer on SCISAT-1
- ACE-FTS measures atmospheric absorption spectra (750-4400 cm⁻¹) using <u>solar</u> <u>occultation</u> technique
- CO, HCN, C₂H₆, C₂H₂, CH₃OH, HCOOH, H₂O₂, H₂CO, ...

Tropical sampling during NH summer ~ Aug

CO - Vertical Structures

ACE-FTS CO averaged over Asia vs. N. America

ACE-FTS – Lon vs. Lat (JJA)

Max over Asian monsoon

Enhancement over N. American monsoon

0.88

0.70

0.52^(mdd) 0.35^(H)

0.17

0.00

0.09

ACE-FTS - Average Profiles

Asian vs. N. American Monsoons

CH₃OH enhancement over N. America (10-12 km)

Do we understand this?

CO vs. CH_3OH (JJA)

Identifying Sources

CO - no biogenic sourcesLarge increase in χ CO – large BB sources Linear correlation with χ (Example – C_2H_2)

CO vs. HCOOH (JJA)

High CO/High HCOOH (BB + transport) HCOOH enhancement ~ 13.5 km (similar to CH₃OH)

CO vs. H_2CO (JJA)

ACE-FTS vs. In-situ measurements

CH₃OH has a large biogenic sources over N. America in summer

CO vs. CH₃OH & C₂H₂

CAM-chem simulations (Aug 2013)

CAM-chem (Community Atmosphere Model with Chemistry) component of the NCAR Community Earth System Model (CESM) and is used for simulations of global tropospheric and stratospheric composition [Lamarque et al., 2012]

GEOS-5, resolution - 1.9° x 2.5°, 56 levels **FINN** (v1.5) BB emission (1x1 km) [Wiedinmyer et al., 2011] Dry deposition and biogenic emissions [CLM]

CAM-chem

(Aug 2013)

surface

CAM-chem vs. ACE-FTS

ACE-FTS – Zonal Mean (JJA)

Asia vs. American Monsoons

CAM-chem - Asia vs. American

HCOOH/CO (x100)

Convective Signal in NH Winter?

ACE-FTS climatology (DJF)

convection over Australia)

Convection over S. America – CH₃OH

color: -30<lat<0, 240<lon<360

CH₃OH high over S. America (convection + sources)

CO *vs*. **CH**₃**OH** (Pacific, NH Winter)

ACE-FTS shows general agreement with CONTRAST

Summary

- Short-lived species (HCOOH, H₂O, CH₃OH) measured by ACE-FTS show similar behavior with CO over the Asian monsoon region.
- However, those species show relative enhancement over the N. American monsoon region, which is different from CO.
- Different sources (*e.g.*, **biogenic**) may contribute enhancement in CH₃OH over N. America with possible link to local convection.
- 4. Comparison of **ACE-FTS** with *in-situ* measurements and **CAM-chem** simulations suggests positive outlook.