Control and influence of NH summer monsoons on stratospheric water vapor

Bill Randel, NCAR Kai Zhang and Rong Fu, U. Texas, Austin Tao Wang, JPL

Well-known seasonal cycle of water vapor in lower stratosphere

Aura MLS 100 hPa

100 hPa water vapor climatology from MLS

2 questions:

- What controls monsoon water vapor
- What is the monsoon influence on the globe?

Aspects of the 40-50 Day Oscillation during the Northern Summer as Inferred from Outgoing Longwave Radiation

KA-MING LAU

Goddard Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, MD 20771

P. H. CHAN

Applied Research Corporation, Landover, MD 20785

1st EOF of OLR over monsoon region

MWR, 1986

© Springer-Verlag 2001

H. Annamalai · J. M. Slingo

Active/break cycles: diagnosis of the intraseasonal variability of the Asian Summer Monsoon[#]

Principal Oscillation Patterns (POP)

temp anomalies for wet composites

The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere

J. S. Wright,¹ R. Fu,² S. Fueglistaler,³ Y. S. Liu,⁴ and Y. Zhang⁵

Received 1 December 2010; revised 3 March 2011; accepted 28 March 2011; published 17 June 2011.

subtropics: most important region for dehydration

Composites over N America wrt 100 hPa H₂O

<u>Same result</u>: less convection ~ wet lower stratosphere

Key points:

• Surprising result: strong (weak) convection associated with

dry (wet) lower stratosphere

- Monsoon H₂O controlled by temperatures in the subtropical stratosphere
- Coherent links to oscillations of the 'tropospheric' monsoon

What is the influence of the monsoons on global stratospheic H_2O ?

0

30E

90E

erai

trajectory model

Schoeberl et al 2013 Domain-filling trajectory model

Large-scale circulation and temps; no parameterized convection

(d) July MLS 100hPa climatological H₂O (ppmv)

120E 150E 180 150W 120W 90W 60W 30W

observations

5.7 5.3 4.9 4.5 4.1 3.7

0

100 hPa anomalies in Asian monsoon water vapor

Experiments

- <u>1. ASIA:</u> remove parcels that ever meet Asian monsoon region 370K-420K during JJA.
- <u>2. NA:</u> remove parcels that ever meet NA monsoon region 370K-420K during JJA.
- <u>3. ASIA&NA:</u> remove parcels that ever meet either Asian or NA monsoon region 370K-420K during JJA.

100 hPa differences

100 hPa differences

100 hPa differences

Blue = monsoon moistens

H₂O (100 hPa) climatology

Traj_ERAi difference maps

Traj_ERAi difference maps

100 hPa

100 hPa

Traj_MERRA

difference maps

NA experiment

NA experiment

100 hPa climatology

NA experiment

Traj_ERAi difference maps

Traj_ERAi

Traj_MERRA

Notes:

- Work in progress and we don't understand it very well yet.
- These are interesting results, but how should we interpret them?
- Do monsoons both moisten and dry lower stratosphere?
- Thanks for any suggestions.

