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Transition of radiative heating in the TTL from negative to
positive values : a transport barrier ?

Schematic of troposphere-to-stratosphere

LZRH and TTL transport pathway.
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General questions

- What is the distribution of convective sources in the TTL?
- Is the zero level of radiative heating a barrier ?
- What is the residence time of parcels within the TTL ?




Daily cycle of the distribution of high
T=230K 250 hPa—11km at6N couds in the Asian monsoon region
210 hPa—-12 km atlat>24 N Brightness temperature from CLAUS

Daily cycle of high clouds July-August 2003-2008, frequency TB<230
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Maritime convection most intense at mid-day but persists overnight
Continental convection most intense in the late afternoon (not well sampled by
CALIPSO)

Gap in high clouds over the Himalayan slope (a lot of rain however). A




T=210K 160 hPa-13.5km ato6N
140 hPa-15km at 30 N

Daily cycle of high clouds July-August 2003-2008, frequency TB<210 K
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Very high clouds are more frequent over maritime regions (North of BoB and
around Philippines.
Over continental regions, max frequency over India




Deep convective patterns are similar between July and August.
Lower frequency in August but around the Philippines.

Daily cycle of high clouds July 2003-2008, frequency TB<230 K
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Trajectory calculations with TRACZILLA

*TRACZILLA : modified version of FLEXPART ([Stohl and al, 2005], [Pisso and Legras,2008])
*Calculations of forward diabatic and backward diabatic trajectories.

eTrajectories are updated every |5 minutes.

*Horizontal part of the movement : calculated using wind fields of ERA-Interim.

*Vertical part of the movement : calculated using radiative heating rates of ERA-Interim.
*No latent heat.

| FORWARD vs BACKWARD |

1 parcel each
0.5°x0.5% at 380K

Diabatic trajectories : N
Horizontal motion due s ,,n\%% ) >m

to horizontal wind —
Vertical displacement el e
by heating rates using
potential temperature 0
as coordinate.

3-hourly data for

, 6-
hourly for
Reference surface
0=380K

Backward launching : 1 parcel on 0.5°x0.5° grid on 40S-40N
every two days, stopped at first encounter of cloud top + 1km
Forward launching : 1 parcel at cloud top +1km for each CLAUS
pixel (3h and 30km resolution) at T<230K, stopped at first
encounter of 380K surface
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Regional boxes are defined over the major contributing sources, with
an accent on the Asian monsoon region, separating continental from
maritime regions and partitioning Asian continental regions.

ALL MASKS CLAUS GRID



Regional boxes are defined over the major contributing sources, with
an accent on the Asian monsoon region, separating continental from
maritime regions and partitioning Asian continental regions.
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Origin of air parcels that cross the 6=380K surface, ERA-Interim

Percentages ERA-Interim 2005-2008

Backward ?0| Forward During summer, the
largest source is the
South China Sea +
Philippines Sea
region. Largest

/\’\__% _ _ | efficiency
82 % of backward |~ / 4 l_\ \ ' A V' N\ (proportion of

trajectories from the il | " AN | parcels reaching
0=380K surface , ' | :
380K) over Tibetan

40S-40N) reach a Apr Jul  Oct _
Eonvectiv)e cloud Plateau and China.

within 3 months. Backward Forward - Efficiency

60 |

Continental Asia
Maritime Asia
Indonesia+Warmpool
Morth Central Pacific
Africa

America

Other oceans

50 r

40 r

W A

Percentage

Summer I B _ ~"\ &

India

China

Tibetan plateau

IndoChina

BoB

South China Sea+Philippines
MNorth Central Pacific

- 1 60}

10 Y 404

Percentage

5

B))= 0 \

May Jun Jul Aug Sep Oct May Jun Jul Aug Sep Oct May Jun Jul Aug Sep Oci

10




Distribution of
sources in
percentages quite
similar among
reanalysis.

Diabatic mass
fluxes in ERA-
Interim are about
twice that of the
two other
reanalysis.
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Vertical distribution of sources and transit times in the ERA-Interim for JIA

The maritime sources of North
Pacific, Philippines Sea and
Sea of China are located under
360K (like the warmpool in
winter). BoB and continental
sources exhibit forward peaks
above 360K. Highest sources
above India and the Tibetan
Plateau.

Most of the sources (~80%)

located above the LZRH (not
shown) except Tibetan
plateau (50%)

(Tissier & legras, ACP, 2016)
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Transit times are
shorter for highest
sources.
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Comparison between the three renalysis. Sources and transit times for back traj.

ERA-Interim JJA 2005 JRA-55 JJA 2005 MERRA JJA 2005

Sources are located \ \
higher in JRA-55 \ \
than ERA-Interim
and much higher in
MERRA.

Transit times are,
however, often o

. count count
longer in MERRA
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MERRA-2 Mean heating dt/dt (K /day) :Jul 2005-2008
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Daily cycle of the all sky heating rates
(in local time)
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ERAInt 2007 B0 MERRA 2007 120 JRASS 2007 120

Mean heating rates +- 1 std
deviation for the three reanalysis in
the tropical band and for Bergman
et al., JGR, 2012 using heating rates
from Yang et al., JGR, 2010 based on
CALIPSO + ISCCP cloud cover
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Cloud heating rate in the ERA-Interim and MERRA-2
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CALIPSO cloud cover (GOCCP, Cesana & Chepfer, JGR, 2013) against ERA-Interim

GOCCP versus ERAI July cloud cover 2006-2012
GOCCP: longitude 83E GOCCP: longitude 87E GOCCP: longitude 91E
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Heating rate due to high altitude clouds (cirrus)
65-75E 75-85E 85-95E

Height [km)]

Heating rate due to convective clouds (opague deep anvils)
65-75E 75-85E 85-95E

0.2 [K/d]

Adapted from Johansson et al., ACP, 2015 using FLXHR heating rates
based GEOPROF-2B-LIDAR (CLOUDSAT Science Team products)
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Yang et al. find mostly cooling above 16 km
while Johansson et al. find dominating
warming above the clear sky LZRH.




Discussion

The Sea of China and the Sea of Philippines are the first contributors to the convective sources during the Asian
monsoon, followed, in terms of mass flux, by India and the Bay of Bengal.

Parcels released at convective top with TB<230K over the Tibetan plateau are the most likely to cross the 380K
surface. Consistent with previous findings of a vertical conduit (Bergman et al., 2012). The Tibetan plateau remains
however a minor contributor to the mass flux across the 380K surface.

Mass fluxes vary by a factor two among the reanalysis. The part of monthly upward mass flux at the 380K surface due
to parcels originating from convection reaches about 80% for ERA-Interim.
In spite of this discrepancy in the total fluxes, the distribution among source regions is similar among reanalysis.

In all reanalysis, the sources are vertically distributed in the vicinity of the all sky level of zero radiative heating but
mostly above (75-80% in ERA-I) except for Tibet (50% in ERA-I), that is well above the mean level of convective
outflow. The LZRH and sources are higher over continental convection. Therefore, the LZRH acts quite effectively as a
vertical transport barrier.

The vertical distribution of sources is located higher in MERRA than in JRA-55 and ERA-Interim.

Differences between reanalysis are largely due to the radiative role of clouds. On the average, produce heating in the
ERA-Interim and cooling in MERRA/MERRA-2.

Opposite effects in the TTL of cloud anvils (cooling above) and cirrus (mostly warming).

Calculations based on observed clouds by CALIPSO are themselves ambiguous.

More work is needed to understand the reasons of these discrepancies and improve our understanding of the heating
rates in the TTL, hence of the transport properties.
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