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What are the transport pathways and timescales that connect the Northern
Hemisphere (NH) midlatitude surface (i.e. emissions region for various greenhouse

gases (GHGs) and ozone-depleting subtances (ODSs)) to the Southern
Hemisphere?




With the exception of a few transport studies (e.g. Bowman and Erukhimova
(2004), Holzer et al. (2009 a,b)), there is a poor current understanding of the
tropospheric transport pathways between the hemispheres and their
relationship to large-scale atmospheric dynamics.
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Most of what we do know quantitatively is limited to gross hemispherically integrated
timescales, like the interhemispheric exchange time (7ex ) (e.g., Geller et al. (1997),

Gloor et al. (2007)).
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However, because of mixing, there is no single timescale that controls transport
from a source region (e.g. planetary boundary layer) to the free troposphere,
but rather a distribution of transit times.

A natural way to quantify transport for advective-diffusive flows, therefore, is in
terms of transit time distributions (TTD).

TTDs have been used to study ocean surface ventilation [Wunsch (2002); Haine
and Hall (2002)], the oceanic burden of anthropogenic carbon [Hall et al.
(2004)] and have been used generally as a measure of stratospheric transport
le.g. Hall and Plumb (1994)].




More precisely, the TTD is the distribution of transit times (7 =1 — t') since
the air at (r,t) was last at an origin region () at time ¢'.
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The TTD (G(7)) captures the broad range of timescales that connect the origin
region () (e.g. NH midlatitude surface) to the rest of the atmosphere.

The Transit-Time Distribution (TTD) G(7)
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n practice the TTD corresponds to a slice at fixed time { of the Green’s
function boundary propagator, which can be calculated in models as the
solution to:

0
(a T ﬂg =0 All of the air at (r,t) had to have last

contacted {2 sometime in its history:

IC. G(O,t,t")=06(t—1t)

Zero flux BC conditions elsewhere.
The transport operator, T, is

defined as: |Holzer and Hall (2000)]

/ drg(r,t,7|2) =1
0

T=v-Vx—p 'V (prVY)




In practice the TTD corresponds to a slice at fixed time { of the Green’s
function boundary propagator, which can be calculated in models as the

solution to:

0,
(o +T)G =0

Ic. G(t,t)=6(t—1t)

Zero flux BC conditions elsewhere.

The transport operator, T, is
defined as:

T=v-Vx—p 'V (prVY)

Eulerian Approach:

Model: NASA GMI-CTM (Strahan et al.
(2007)) driven with MERRA reanalysis fields
(2000-2010).

TTD: Approximate the TTD (Y) as the
average of an ensemble of four Boundary
Impulse Response (i.e. “pulse”) passive
tracers (e.g. Haine et al. (2008), Li et al
(2012)) that are released at the N
midlatitude surface at times ¢’ = January 1,
April 1, July 1 and October 1 in year
2000.




Quick Note on BIR-based Approximation of the TTD
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Model calculations and observational inferences of the TTD in the stratosphere have
shown that the TTD, G(7), is very broad [Hall and Plumb (1994), Waugh and Hall
(2002)].

The Transit-Time Distribution (TTD) G(7)
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TTD in GMI-MERRA Simulation

ransit-Time Distribution G(r, 7|2Mp)
at 312 hPa (top) and 873 hPa (bottom)
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The GMI-MERRA TTD approximation shows
that there is also a broad range of
transport timescales throughout the
troposphere.

Here, the source region OnMip =
Northern Hemisphere midlatitude surface
(i.e. first model level between 30°N-50°N)



TTD in GMI-MERRA Simulation

ransit-Time Distribution G(r, 7|2Mp)
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These results strongly indicate that
a single interhemispheric exchange
time ( Tex ) does not capture the
broad range of transport paths and
timescales that determine the
distributions of greenhouse gases
and ozone-depleting substances.



Mean Age: Model vs. Observations

Surface SFgAge (1979-2011)

Modeled interhemispheric transport is
slightly slow, compared to observations,

where SFg age (I'spe) is equal to the
mean age and is defined as:

xsre(r,t) = xo(t — I'sre)

O X (HATS, CCGG, ship cruise SFg)

@ (HATS SFg, CFCs, HCFCs) from Holzer and
Waugh (2015)

surface SFg age at 180°W from GMI-MERRA
model (£1 standard deviation)

From Waugh et al. (2013)
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Main Properties of the TTD

corresponding modal transit times (i.e. modal ages).
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Main Properties of the TTD

2 The shape of the TTD changes throughout the troposphere. The TTD is
broader relative to its mean in the tropical upper troposphere (i.e. more

skewed/asymmetric).

TTD Shape Parameter A/T

pressure [hPal

90°s 60°S 36°S EQ 30°N 60°N 90°N
| atitude

90°S 60°S 30°S EQ 30°N 60°N 90°N
Latitude



pressure [hPal

broac

2 T

Main Properties of the TTD

ne shape of the TTD changes throug

er relative to its mean in the tropical

skewed/asymmetric).

60°S 30°s EQ 30°N 60°N
Latitude

pressure [hPal

100

200

300

400

500

600

700

3800

900

nout the troposphere.

upper troposphere (i.e. more

TTD Shape Parameter A/T

————
e Ve

|
|
I
I

| ,
L
o) /
o

90°s

60°S

30°S 60°N

EQ
Latitude

90°N

The TTD is

2.5

2.0

15

1.0

) 0.5



Main Properties of the TTD

2 The shape of the TTD changes throughout the troposphere. The TTD is
broader relative to its mean in the tropical upper troposphere (i.e. more
skewed/asymmetric).
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Individual Boundary Impulse Responses
Evaluated at 10°S
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Individual Boundary Impulse Responses
Evaluated at 10°S
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Percentage of Air that was Last at {2yp 11-20 Days Ago [LIIITITTHNE"

Zonal Mean At 10°S
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Percentage of Air that was Last at {2yip 21-30 Days Ago (LILITTIEINNE"

Zonal Mean At 10°S
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Percentage of Air at 200 mb
Last at (2yp 7-8 Days Ago

Shading: BIR fraction f72(r|Qmip,t’)
Black contours: cumulative mass flux from convection [x107? kg/m?/s]
Winds: MERRA Reanalysis
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Percentage of Air at 200 mb
Last at 2yp 11-12 Days Ago
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Percentage of Air at 200 mb
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Percentage of Air at 200 mb
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Shading: BIR fraction f7?(r|Qwmip,t’)
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Winds: MERRA Reanalysis



While the TTD is a fundamental diagnostic of the flow it is ..

1) Not directly observable

2) Cumbersome to calculate properly in GCMS (i.e. non-stationary
flows), unless an adjoint model is used (Haine et al. (2008)).

3) Approximation with BIRs cannot be used to give rigorous information
about details of the seasonal and interannual variability of the TTD.



We know, however, the concentrations of chemically decaying species (X7.) emitted
over ) reflect the convolution of their loss (e.g. e=™/7 ) with the underlying TTD, G(7).

The Transit-Time Distribution (TTD) G(7)
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> 7 /7 where X = tracer concentration
XTe = ; T xa9(7)e over source region



The Transit-Time Distribution (TTD) G(7)

500 1000
transit time 7 [days]

: : : : : -1
This suggests that combinations of tracers with different loss rates, 7. ,

can be used to infer the TTD Iin models.

t also suggests that real observable tracers (that undergo loss) can be used to
constrain the TTD from observations.



A passive tracer (TR) suite has been introduced within the GEOS-5 model framework.

A subset of the TR tracers were also requested in the recent SPARC-IGAC Chemistry
Climate Modeling Initiative (CCMI), enabling comparison of GEOS-5 atmospheric
transport with broad range of other climate models.

Tracer (X) Boundary Condition (XQuip) Source (S)

NH-Loss (X7.)
Tc =5, 50 days
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5-Day and 50-Day Tracers in GMI-MERRA Simulation
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Direct Simulation of X (top) vs. Reconstruction from TTD G(7)(bottom)
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pressure [hPa]

Fast Low-Level Transport Paths

ldealized loss tracers feature the low-level fast transport paths to the SH
over the Pacific and Africa. Fast transport path signatures decrease with

older tracer lifetimes. Here, the tracer age I'. = —7cIn(x+~ /X )-

>-Day Age ' 50-Day Age I's
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Fast Upper-Level Transport Paths South of the Asian Monsoon

ldealized loss tracers feature fast upper-level cross-equatorial transport paths
over the Asian Monsoon and Pacific. Again, less structure in mean age

tracer.

50-Day Age P5Q
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Seasonality (OT') of Age Tracers [[TTTTTTTTI. (o
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JJA Interannual Variability (or ) of Age Tracers [T 1
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Transport in Specified Dynamics and Free-Running Simulations

Simulations

Horizontal Resolution Meteorological Fields

Replay (Her. V4.2) MERRA Specified-Dynamics Simulations:

(MERRA (1979-2010))
WACCM 5-hr 1.9°x 2.5° Nudged-MERRA**
-Different model configuration (convective
WACCM 50-hr 1.9°x 2.5° Nudged-MERRA** parameterization, “nudging” approach)
Free (Her. V4.2) Internally Generated
WACCM Free 1.9°x 2.5° Internally Generated

* Regular Replay used, but Intermittent Replay Simulation produces similar transport in troposphere
*to T, UV, PS




Transport in Specified Dynamics and Free-Running Simulations

Simulations

Horizontal Resolution Meteorological Fields

Replay (Her. V4.2) MERRA

WACCM 5-hr 1.9°x 2.5° Nudged-MERRA**

WACCM 50-hr 1.9°x 2.5° Nudged-MERRA**

rree (Her. V4.2 Internally. Generated "—‘ Free-Running Simulations:
WACCM Free 1.9°x 2.5° Internally Generated

-Different large-scale flow

* Regular Replay used, but Intermittent Replay Simulation produces similar transport in troposphere
*to T, UV, PS



Transport Differences: 5-Day Age
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Transport Differences: 50-Day Age

DJF Mean I'so at 500 mb [days]
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Transport Differences: Mean Age

DJF Mean 1" at 500 mb [days]
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Source of Transport Differences: Tropical Convection

Cum. Mass Flux from Convection (CMF_CNV)
Evaluated over the Indian Ocean*

Same large-scale flow but very different

—— GMI-CTM .
convective mass fluxes
300 GEOS-5 Replay
—— WACCM 50-hr , |
- WACCM 5-hr NASA models convective mass fluxes are
>0 larger, especially in the lower
troposphere.
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5-Day Age I's [days]

Source of Transport Differences: Tropical Convection

Specified-Dynamics Simulations
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5-Day Age I's [days]

Source of Transport

Specified-Dynamics Simulations
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5-Day Age I's [days]

Specified Dynamics Versus Free-Running Simulations
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Specified Dynamics Versus Free-Running Simulations
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Conclusions

There is a broad distribution of transit times that controls transport from
the NH midlatitude surface:

1 Fast cross-equatoria

| transport paths are concentrated over the Pacific

during DJF and south o

- the Asian Monsoon anticyclone during JJA.

2 Time variations in idealized loss tracers reveal large seasonality and

weak interannual variability in upper tropospheric fast cross-equatorial

transport paths. Why?



Conclusions

Comparisons of large-scale interhemispheric transport between free-running
and specified dynamics simulations show that:

1 There are large (20-30%) differences in interhemispheric transport
between models driven with the same large scale flow. The
interhemispheric transport between free-running simulations is more similar

than between specified dynamics simulations.

2 These differences appear to be related to differences in convection in
the tropics and its handling in various “nudged/replay” simulations.




