Linkages of subtropical stratospheric intra-seasonal intrusions with Indian summer monsoon rainfall

Indian Institute of Tropical Meteorology, Pune

Suvarna Fadnavis
A life cycle of a strong subtropical stratospheric intrusion during June 2014 influence reduce the intensity of Indian rainfall after onset.

Analysis of all monsoon breaks days during 29 years (1979-2007) (Breaks days from Rajeevan et al., 2010)

Propose a hypothesis on “Linkages of Stratospheric Intrusion with deficit Indian rainfall”
Ramaswamy (1962) has proposed that the intrusion of the mid latitude trough may trigger monsoon deficit rainfall over the Indian region and lead to development of break monsoon condition.

Mapes and Zuidema (1996); Allen et al., (2009) delineate invasion of dry air from subtropical upper troposphere with tropical droughts.

Krishnan et al., (2000) have attributed monsoon breaks to an abrupt movement of anomalous Rossby waves originating from Bay of Bengal traveling into northwest and central India.
Deficit rainfall over India during June 2014

Suvarna Fadnavis and Rajib Chattopadhyay, J. Clim, 2017
Data and Analysis

ERA-Interim Reanalysis data:
- Potential Vorticity (PV)
- temperature
- winds
- ozone
- relative humidity (RH)
- Indian summer monsoon rainfall (ISMR) from India Meteorological Department

Diagnostic Analysis:
- Bivariate Probability Distribution Function (BPDF) of the two variables (PV and rainfall)
- Specific humidity (q) (vertically averaged between 400hPa-200hPa)
- Vertical wind shear (i.e. difference in zonal winds (U) at 200hPa minus 850 hPa)
- Temperature anomaly (departure from climatology) index (Tanom_diff_index), (i.e. temperature anomaly at 200 hPa minus 850 hPa)
- Kinetic energy at 200 hPa (ke200 i.e. U*U)
Eddy shading from the RWB over the Tibetan Plateau
Rossby wave breaking in the jet \rightarrow migration of extra-tropical stratospheric PV (>2) over the Tibetan Plateau
Rossby Wave Breaking (RWB) at 370 K

Westward eddy shedding associated with RWB

Suvarna Fadnavis and Rajib Chattopadhyay, J. Clim, 2017
Intrusion of dry and ozone-rich air

Ozone In the UT

RH < 30%

10 June 12 June 14 June 16 June 18 June
RWB event associated with cold intrusion over the Tibetan Plateau from extratropics. Cold air persisted for the rest of month - June 2014.
Stratospheric intrusion 10 June 2014 → cold air and dry in the UT for rest of the month → Increase in static stability → may lead to monsoon break.

Suvarna Fadnavis and Rajib Chattopadhyay, J. Clim, 2017
Linkages of stratospheric intrusion with Indian rainfall

Stratospheric PV → negative anomalies in temperature over TP and CI → high OLR → negative anomalies in rainfall

Suvarna Fadnavis and Rajib Chattopadhyay, J. Clim, 2017
Bivariate Probability Distribution Function (BPDF) is negatively skewed, indicating a likelihood of deficit monsoon during stratospheric intrusions (PV>2).

It indicates that subtropical stratospheric intrusions near the Indian region may be one of the factors influencing ISMR deficit.
Hypothesis: Linkages of stratospheric intrusion with Indian rainfall deficit

Suvarna Fadnavis and Rajib Chattopadhyay, J. Clim, 2017
Balloonsonde measurements at Nainital, India (August 2016)

Collaboration: IITM, Pune, ETH, Zurich, DWD Germany, ARIES, Nainital

Fadnavis et al., 2017
Thank you!