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Introduction
• PM2.5 exposure caused >1 million premature deaths in India in 2015 

(Health Effects Institute, 2017)

• Accurate projections of future PM2.5 require accurate modeling of 

chemistry and relationship to meteorology in present day

• A difficult task since it requires accurate representation of the 

individual components – their emissions, chemistry & transport

Especially difficult over India due its 

extreme environment with respect to:

(1) Physical (complex topography)

(2) Chemical (concentrated and 

abundant primary and precursor 

emissions)

(3) Dynamical (meteorology; e.g., 

shallow temperature inversions)
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Models severely underestimate PM2.5, 

especially in winter 
(below; Dec. 2004 from Pan et al., ACP, 2015)
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Pan et al. (2015) concludes that a 

large reason for models’ low bias 

during winter is due to 

underestimated emissions. Mainly 

OM and BC from biofuel.

October 2015 – March 2016

(Left) CMIP6 emissions (Hoesly et al., 2017)

(Right) Difference (%) from CMIP5 to 

CMIP6 emissions

Most emissions have increased (~50% –

100%) nearly everywhere

SO2 is more concentrated (i.e., increases at 

“hotspots” (power plants) and decreases 

elsewhere)



Materials
Air quality

• Hourly surface PM2.5 from 22 sites across Northern India from India’s 

Central Pollution Control Board (CPCB) 

• Recent: October 2015 – 31 March 2016 (season of highest PM2.5)

Meteorology

• 6-hourly reanalysis data (NCEP/NCAR and ECMWF) of:

RH, BLH, surface (10m), 850mb, and 500mb winds, precipitation, difference 

between surface (2m) and 850mb temperature = INV

Model

• Developmental version of the new-generation NOAA GFDL Atmospheric 

Model, version 4 (GFDL AM4) - Cubed-sphere finite volume (1° x 1.25° x 

48L)

• Chemical mechanism similar to AM3 (Naik et al.,  2013) with gas-phase and 

heterogeneous updates (Mao et al. 2013 a, b) and updated nitrate chemistry 

(Paulot et al., 2016)

Two simulations (1 Jan 1980 – 31 March 2016) :

one using CMIP5 emissions, one using CMIP6 emissions



Modeled components of PM2.5 and inclusion of aerosol water

PM2.5 (dry) = SOA + dust1 + 0.25*dust2 + ssalt1 + ssalt2 + 0.167*ssalt3 + 

BCphillic + BCphobic + OMphillic + OMphobic + NH4 + NO3 + SO4

PM2.5 (wet) = SOA + dust1 + 0.25*dust2 + ssalt1 + ssalt2 + 0.167*ssalt3 + BCphillic

+ BCphobic + OMphillic + OMphobic + 1.32*(NO3 + ß*NH4) + 1.46*[SO4 + (1 – ß)*NH4]

First partition NH4

ß = NO3/(NO3 + 2*SO4)

Hygroscopic growth factors calculated at 50% relative humidity 

(operationally defined by India’s CPCB)

*Some uncertainty involved; e.g., GEOS-CHEM uses 1.51 for NH4, 

NO3, and SO4, as well as 1.24 for SOA and OMphillic



CMIP5 Emissions 

CMIP6 Emissions 

5th 50th 95th

5th 50th 95th



Daily Variability at 2 model cells with multiple observations (<100km)

AM4-CMIP5 and AM4-CMIP6 are highly correlated but have vastly different magnitudes

Inclusion of hygroscopic growth (AM4-CMIP6 wet) reduces bias but decreases correlation

Correlation with OBS is modest: r = 0.58 for New Delhi; r = 0.71 for Kanpur/Lucknow

5 day festival of Diwali 
(extensive fireworks)



Correlation with total observed PM2.5 is largest with 

OM and BC – components that are more (less) influenced by 

meteorology (chemistry)

What component(s) is too low? SO4? BC?

Diwali

Dominant modeled 
(dry) components =

NO3 (14–53%, µ = 39%)

+ OM (13–46%, µ = 25%)

+  NH4 (9–22%, µ = 16%)

= ~80%)



Meteorological 

cycles are matched 

implying that 

emissions need a 

diurnal cycle

e.g., evening pulse 

in traffic, heating, 

and cooking

AM4 somewhat 

catches the morning 

rise in PM2.5 but 

missing the secondary 

evening peak

PM2.5

RH

BLH

T850 – T2m

WS10m



Relative
Humidity

Boundary
Layer 
Height

T850 – T2m

10m wind

850mb wind

500mb wind

(LEFT) – Average Meteorology

AM4 matches observed meteorology 

(expected since its nudged)

(RIGHT) – corr(PM2.5, meteorology)

Also matches most of the observed 

correlations with meteorology

Highest correlations in the far 

eastern edge of the IGP in the states 

of Bihar and Uttar Pradesh (circles)

Largest correlation with relative 

humidity*, boundary layer height and 

T850 – T2m

Positive correlations with 500mb 

wind speed…Why?

Typically, low 500mb wind speeds 

stagnation  high PM2.5



Stagnation; ASI = 10m wind + 500mb wind + precipiation

10m wind (< 3.2 m s-1) 500mb wind (< 13.0 m s-1)

Precip (< 1.0 mm day-1) Total ASI

AM4 matches 

observed 

stagnation 

frequencies

= 100% for 10m 

wind and precip in 

many locations

500mb is limiting 

component of total 

ASI (~35% of days)



TEST: Composite of average PM2.5 on days that are stagnant 

versus days that are not (1 Oct 2015 – 31 March 2016)

10m wind (< 3.2 m s-1) 500mb wind (< 13.0 m s-1)

Precip (< 1.0 mm day-1) Total ASI

Gray = 100% stagnation

Increased PM2.5 on days 

with low surface wind 

speeds and low 

precipitation

But…

Decreased PM2.5 on days 

with low upper level winds

(not sensitive to cutoff) 

Since 500mb winds are 

limiting ASI component 

low PM2.5 on ASI days



This relationship is recent 

(i.e., stagnation  lower PM2.5

Earlier decades show near-

zero and some positive

composites over most of India

Recent decades have 

negative composites over 

most of Northern India by 

2011-2015

Stagnation causing high 

pollution days in one 

climate regime may not 

apply to future climate

What conditions consistently 

result in poor air quality?



Use of other meteorological variables

Quantities that 

describe the 

stability of the 

lower atmosphere 

are better 

indicators of 

wintertime PM2.5 –

especially over 

the IGP

Figure: Composite of 10 days with highest PM2.5 minus 10 days with 

lowest over Oct – Mar, 2015-2016 (~ 95th percentile minus 5th percentile)



These 

meteorological 

variables are 

consistent in their 

relationships to 

PM2.5 over the 

past 3+ decades, 

despite massive 

changes in 

emissions



Conclusions

• Emission dataset developed for CMIP6 vastly reduces the low bias of 

the AM4, nearly doubling the amount of PM2.5 simulated in 2015-2016

• Highest PM2.5 found in the Indo-Gangetic Plain (IGP) 

• PM2.5 in the IGP is also most sensitive to meteorological variables –

those that describe lower atmospheric stability: i.e., RH, BLH, strength 

of temperature inversion, and low level wind speed.  

• In the AM4, nitrate (NO3
–) and organic matter (OM) are the dominant 

components of total PM2.5 over most of Northern India, and they are 

also the most sensitive components to meteorology 

• The air stagnation index (ASI), a commonly used indicator of poor air 

quality, is generally not able to predict high pollution days in the present 

decade over the most polluted regions of Northern India.


