

Regional Chemistry-Climate Simulations in South Asia

Mary C. Barth¹, **Rajesh Kumar¹**,
G. G. Pfister¹, L. Delle Monache¹, J. F. Lamarque¹, S. Archer-
Nicholls¹, S. Tilmes¹, S. D. Ghude², C. Wiedinmyer¹, M. Naja³ and S.
Walters¹

¹National Center for Atmospheric Research, Boulder, CO, USA

²Indian Institute of Tropical Meteorology, Pune, India

³Aryabhatta Research Institute of Observational Sciences, Nainital, India

Objectives

1. How will future air quality of South Asia respond to projected changes in climate and emissions of key trace gases and aerosols?

RCP = Representative Concentration Pathway

Projected Ozone for South Asia from Global Model

Based on CAM-Chem Simulations at $2.5^\circ \times 1.9^\circ$

CAM-Chem projects increased ozone of 2-10 ppbv
RCP8.5 Scenario

Projected PM2.5 for South Asia from Global Model

Based on CAM-Chem Simulations at $2.5^\circ \times 1.9^\circ$

CAM-Chem projects a small increase of PM2.5 by
0-8 $\mu\text{g}/\text{kg}$ in India
RCP8.5 Scenario

Objectives

1. How will future air quality of South Asia respond to projected changes in climate and emissions of key trace gases and aerosols?
2. How are these projections affected by horizontal grid resolution?
 - Evaluation with present day observations
 - Comparison of future projections at different model resolutions

Nested Regional Chemistry Climate Simulation

Two domains:

Outer: $\Delta x = 60$ km, full year

Inner: $\Delta x = 12$ km, Oct-May dry season

Present Day: 1995-2004

Future: 2045-2054

10-year simulation – to account for interannual variability

Chemistry-Climate Simulation

1. Present day emissions and present day climate (PRES)
2. Future emissions and future climate (RCP8.5)
3. Future emissions and future climate (RCP6.0)

1. Evaluation of Present Day Results
2. Importance of Model Grid Resolution

NRCM-Chem Compared to MOPI TT Satellite Data

Comparison of seasonal average CO mixing ratios at 900 hPa

Spatial correlation coefficient is >0.8

Percentage difference show 0-20% differences

NRCM-Chem Compared to CO Monitoring Stations

Outer Domain
 $\Delta x = 60$ km

Inner Domain
 $\Delta x = 12$ km

Udaipur
Ahmedabad
Kanpur

CO seasonal cycle is well represented

Inner domain at $\Delta x = 12$ km predicts magnitude better than coarse domain

The same is true for NO_x

NRCM-Chem Compared to PM2.5 Monitoring Stations

PM2.5 seasonal cycle is fairly well represented

Inner domain at $\Delta x = 12$ km predicts magnitude better than coarse domain in October–February

AOD and Ångström Exponent seasonal variations reproduced well

NRCM-Chem Compared to Ozone Monitoring Stations

Ozone seasonal cycle is represented well

Inner domain predicts magnitude similarly or somewhat better than outer domain

NRCM-Chem Compared to Ozone Monitoring Stations

From TOAR chapter 7, under review

Regional Chemistry-Climate
Model performs much better
than Global CTMs

Objectives

1. How will future air quality of South Asia respond to projected changes in climate and emissions of key trace gases and aerosols?

Annual Average, Maximum Daily 8-hour Average (MDA8h) surface ozone across scenarios

CAM-Chem

Difference (ppbv)

CAM-Chem has similar pattern for 24-hour average and somewhat smaller magnitude compared to NRCM-Chem

- O_3 increases in both RCP8.5 and RCP6.0 scenarios
- O_3 remains below the National Ambient Air Quality Standard (NAAQS) of 50 ppbv over most parts of the domain

Dry season (Oct-May) average MDA8h surface ozone across scenarios

O_3 exceeds the NAAQS of 50 ppbv over most parts of the land area for all scenarios

Difference during dry season is greater than annual average

Annual Average PM2.5 across scenarios

- Increase in RCP8.5
- Decrease in RCP6.0
- PRES and RCP8.5 exceed NAAQS of 40 µg/m³

CAM-Chem has much weaker signal compared to NRCM-Chem

Frequency distributions of D01 and D02 MDA8 ozone and 24-h average $\text{PM}_{2.5}$ for the Indian states located in the Indo-Gangetic Plain during dry-season

→ Approximately same results for $\Delta x=60\text{km}$ Outer domain and $\Delta x=12\text{km}$ Inner Domain

→ For regions where emissions occur throughout the region, coarser grid resolution simulations represent ozone and PM2.5 well

Number of Days Country Exceeds WHO Limits

(50 ppbv O₃ ; 40 µg/m³ PM2.5)

- Number of days MDA8 **ozone** exceeds WHO limits increases for RCP8.5
- Number of days DA24 **PM_{2.5}** exceeds WHO limits moderately increases for RCP8.5
- RCP6.0 results similar to or less than present day results

Summary

1. How will future air quality of South Asia respond to projected changes in climate and emissions of key trace gases and aerosols?
 - Increase in Annual Average of Maximum Daily 8-hour Ozone Average
 - especially from present day to RCP8.5 projection (only a small increase for RCP6.0 scenario)
 - especially in dry season
 - Increase in Annual Average of 24-hour PM2.5 Average for RCP8.5 projection but a decrease for RCP6.0 projection
 - Exceedance days for ozone and PM2.5
 - increase significantly in RCP8.5 scenario
 - remain similar to present day in RCP6.0 scenario

Summary

2. How are these projections affected by horizontal grid resolution?
 - NRCM-Chem able to capture seasonal variability of both ozone and PM2.5 at both grid resolutions
 - While $\Delta x=12$ km inner domain shows better agreement than $\Delta x=60$ km outer domain with observations of CO and NO_x , their results were similar for ozone and PM2.5
 - Differences between future scenarios and present day were similar for both $\Delta x=12$ km inner domain and $\Delta x=60$ km outer domain
 - Global-scale model predicts same pattern but weaker signal compared to regional-scale model results

Air pollution is a major environmental problem in South Asia and will remain so by the mid century irrespective of the Representative Concentration Pathway

Extra slides

Same as Figure S4 but for surface PM2.5 mass concentrations

Same as Figure 11 but domain 2

Annual averaged total anthropogenic emissions of NO_x and PM_{2.5} over the outer model domain for present-day (ACCMIP, 2000) and future (RCP8.5 and RCP6.0, 2050) time periods.