Composition and transport in the Asian summer monsoon anticyclone (ASMA): A case study based on in-situ observations during ESMVal and EMAC simulations

K. Gottschaldt¹, H. Schlager¹, with contributions from
R. Baumann¹, H. Bozem³, D. S. Cai¹, V. Eyring¹, P. Graf¹, V. Grewe^{1,2},
P. Hoor³, P. Jöckel¹, T. Jurkat¹, C. Voigt^{1,3}, A. Zahn⁴, H. Ziereis¹

Wissen für Morgen

3rd ACAM workshop Guangzhou, 08.06.2017

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ²Delft University of Technology, Aerospace Engineering, Delft, The Netherlands ³Johannes Gutenberg-Universität, Institut für Physik der Atmosphäre, Mainz, Germany ⁴Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Karlsruhe, Germany

Obs & sim | Trajectories | TL entrainment | Splitting | Exceptional? | Ozone | Seasonal evolution | Summary

HALO ESMVal campaign

Q1: What composition was encountered and can we explain the observations? Q2: What did we learn about processes in the ASMA in general?

EMAC simulation:

- global, specified dynamics (ESCiMo RC1SD-base-10a)
- O₃ ~20 nmol/mol too high
- Pattern reproduced

nent | Splitting |

| Exceptional?

one | Seasonal evo

| | Summary

Measurements vs simulation: Other tracers

• @ instrument limit

- Spurious washing out or slightly misjudged gradient in sim
- Surprisingly good for monthly BB emissions

Parameterized lightning:

- Cannot expect
 exact match
- Magnitude ok

Simulation

Considering coarse resolution, approximations / parameterizations

Surprisingly well reproduces observations of HALO ESMVal, at least large scale features

Ok to use simulation for the interpretation of the measurements

Obs & sim

Trajectories | TL entrainment | Splitting | Exceptional? | Ozone | Seasonal evolution | Summary

HYSPLIT

Back-trajectories

- ~10 days ASMA roundtrip
- ~3 days from eastern flank •

Almost parallel UT trajectories \rightarrow Radial transport barrier

Trajectories TL entrainment | Splitting | Exceptional? | Ozone | Seasonal evolution | Summary

Back-trajectories

Obs, EMAC, HYSPLIT

All 3 flight segments have seen a filament of similar genesis:

- At least one ASMA roundtrip in UT
- Entrainment by upwelling at eastern ASMA flank ٠

EMAC

Enhanced HCI

18 Sep 2012

- HCI = tracer of stratospheric influence
- **Filament originating** in Tropopause Layer @ eastern ASMA flank

Composition and transport ... ASMA ... ESMVal

Composition and transport ... ASMA ... ESMVal

Intro | Obs & sim | Trajectories | TL entrainment | Splitting Exceptional? Ozone | Seasonal evolution | Summary

EMAC

HALO ESMVal = exceptional? TL entrainment

2012 HALO ESMVal

HCI

Obs & sim | Trajectories | TL entrainment | Splitting Exceptional? Ozone | Seasonal evolution | Summary

EMAC

HALO ESMVal = exceptional? TL entrainment

Entrainment of stratospheric tracer at eastern ASMA flank not a rare event

Composition and transport ... ASMA ... ESMVal

Obs & sim | Trajectories | TL entrainment | Splitting | Exceptional? | Ozone | Seasonal evolution | Summary

EMAC

HALO ESMVal = exceptional? Splitting

50

Composition and transport ... ASMA ... ESMVal

Obs & sim | Trajectories | TL entrainment | Splitting Exceptional? Ozone | Seasonal evolution | Summary

EMAC

HALO ESMVal = exceptional? Splitting

Dynamical instabilities ubiquitous (e.g. ASMA splitting)

Obs & sim | Trajectories | TL entrainment | Splitting Exceptional? Ozone | Seasonal evolution | Summary

EMAC

Tibetan and Iranian anticyclones

DLR

Obs & sim | Trajectories | TL entrainment | Splitting | Exceptional?

Ozone

EMAC

Decreased O₃ in the ASMA?

 O_3 minimum ...

rather in isentropic than in p-coordinates

Sep 2012

averages

°N

40

30

20

10

0

-10

-10

°N

40

-10

30

Obs & sim | Trajectories | TL entrainment | Splitting | Exceptional?

340K

120°E

Ozone

EMAC

- 20

28

5.20

30

60

90

200hPa

120°E

175hPa

150hPa

 O_3 minimum ...

rather in isentropic than in p-coordinates

DLR

60

90

Obs & sim | Trajectories | TL entrainment | Splitting | Exceptional? | Ozone

Seasonal evolution

Summary

EMAC

Seasonal evolution

Dynamical modes (Pan et al., 2016)

- Evolution of laterally averaged profiles throughout a year ٠
- Separately for eastern & western ASMA parts

HCI in the UT ASMA is a tracer of TL or St inmixing

- CO in the UT ASMA is a tracer of BL air, incl. other O_3 precursors
- Uplift in Tibetan part, episodic UT transport to Iranian part, descent to mid Troposphere

 Mostly lightning NO_x in UT ASMA (Sensitivity simulations)

 NO_x in simulation supported by ~ matching in-situ obs

 Maximum photochemical O₃ production where (lightning) NO_x meets other precursors (~CO)

• ASMA outflow O₃-rich

Intro | Obs & sim | Trajectories | TL entrainment | Splitting | Exceptional? | Ozone | Seasonal evolution

Summarv

Publications

Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union

Trace gas composition in the Asian summer monsoon anticyclone: A case study based on aircraft observations and model simulations

Klaus-D. Gottschaldt¹, Hans Schlager¹, Robert Baumann¹, Heiko Bozem², Veronika Eyring¹, Peter Hoor², Patrick Jöckel¹, Tina Jurkat¹, Christiane Voigt^{1,2}, Andreas Zahn³, and Helmut Ziereis¹

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ²Johannes Gutenberg-Universität, Institut für Physik der Atmosphäre, Mainz, Germany ³Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Karlsruhe, Germany

www.atmos-chemphys.net/17/6091/2017

Interplay of dynamics and composition in the Asian summer monsoon anticyclone

Klaus-D. Gottschaldt¹, Hans Schlager¹, Robert Baumann¹, Duy S. Cai¹, Veronika Evring¹, Phoebe Graf¹, Volker Grewe^{1,2}, Patrick Jöckel¹, Tina Jurkat¹, Christiane Voigt^{1,3}, Andreas Zahn⁴, and Helmut Ziereis¹

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

²Delft University of Technology, Aerospace Engineering, Delft, The Netherlands

³Johannes Gutenberg-Universität, Institut für Physik der Atmosphäre, Mainz, Germany

⁴Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Karlsruhe, Germany

submitted

Gottschaldt et al.:

Composition and transport ... ASMA ... ESMVa

Summary

Summary

Enhanced HCI, CO, NO, NO_v,O₃

- TL entrainment
- Upwellings / convection
- Lightning NO_x
- Net O₃ production

Variability due to

- On-off nature of convection
- Dynamical instabilities

ASMA processes important beyond HALO ESMVal