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Why should we care for methane?

= Second most important driver of anthropogenic climate change.

Resulting atmospheric drivers
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= Addresses climate change on time scales of decades.

= Sectorial emissions of CH, remain highly uncertain, particular from Asian
region due to limited observations.




AMASA

( Atmospheric Methane from Agriculture in South Asia )

a project sponsored by the Environment Research and Technology Development :
April 2015-March 2018 Leader: Sachiko Hayashida

Goal 1: Improvement of Methane Goal 2: Development of an
Emission Estimate from South Asia Emission Mitigation Proposal
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Satellite measurements of XCH,

a 2010-2013 Global GOSAT Retrievals

GOSAT (2009 - present)

SWIR -- XCH, -- Integrated
measure of CH, with

contributions from different
vertical atmospheric layers.
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ACTM can be used
to investigate the
role of transport and
chemistry

Emission information could not drive straightforwardly without separating the
role of transport and chemistry in the XCH,.




Aim of this study

Understand the responsible factors for XCH, seasonal cycle over the
Asian monsoon region.

Data Used in present study:

Period: 2011 - 2014
Observations and model: GOSAT and JAMSTEC’s ACTM

Simulations : (Anthropogenic: EDGARV4.2; Wetl. & Rice: VISIT; Termite: GISS;
Bio. Burn: GFED)

Two different emission scenarios (AGS and CTL) are used to examine
model sensitivity to change in the underlying fluxes in simulations of the
total atmospheric column.

AGS: All emission sectors in EDGAR42FT kept constant at the values for 2000, except for
the emissions from agricultural soils.

CTL: EDGAR32/VISIT/GISS




XCH, from GOSAT and ACTM over Indian region
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X,CH, (ppb)

XCH, (ppb)

Role of vertical layers in XCH, mixing ratios
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Contributions of vertical layers in XCH, mixing ratios
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Source of higher CH, in the upper troposphere
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Conclusion

v" Both convection and advection play significant role in transport and
redistribution of CH, over the South Asian monsoon region.

v" A direct link between surface emissions and higher levels of XCH,
can not be established straightforwardly.

v" Upper troposphere contribute strongly in the peak of XCH, over
most of the regions lying in the northern part of India.
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Analysis of GOSAT and in-situ measurements of methane
(NWU).

Methane measurements in South Asia (NIES).
Mitigation options of methane emissions (NIAES).
Methane flux measurements in South Asia (Chiba Univ.).

Continuous measurements of methane by a laser Instrument.

Inverse Analysis of Methane (JAMSTEC).




Source of higher CH, in the upper troposphere
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Contributions of vertical layers in XCH, mixing ratios
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Calculation of XCH,

XCH, is calculated from the ACTM profile using the formula X; CH, (i)
x Ap;, where i is the model level of thickness Ap,

XCH, = £, CH, (n)* [(0}, (n) + 0, (n-1))12~ (0, (n) + o, (n+1))12]

For the first layer (n =1)
XCH, =1, CH,(n)* [1- (o, (n) + 0, (n+1))/2]

where
n = number of vertical sigma pressure layer,
0, = sigma pressure level
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Total columnar CH, loss rate (ppb/day)
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Temperature impact (10 K)

Why do we care about methane?

= Second most important drivers of climate change.

Resulting atmospheric drivers
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* Importance of methane as a short
lived climate forcer (SLCF).

* Curbing CH, emissions will more
helpful than CO, to fight against
global warming at inter-decadal time

scale.
Source: IPCC, 2013




CH, emission : complexities and uniqueness of ACTM

Source types

Natural:

VISIT: Wetl & Rice
GISS: Termite
GFED: Bio. Burn
SRON: Ocean
SRON: MudVolcano

Anthropogenic:
(EDGAR4.2)

IPCC_1A (transport)
IPCC_1B (Fugitive)
IPCC_2 (Industry)
IPCC_4A (Ent. Ferm.)

Soil sink: VISIT
Chemical loss:

OH: Spivakovsky/scl
Cl/O'D: ACTM

inversion
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Trends : come from Anthropogenic emissions

Inversion results
are dependent on
the choice of prior
flux

So inversions are
run for 7 ensemble
cases

The outliers are
decided by
independent
aircraft
measurements

Variability : are mainly due to Natural emissions




Challenges

* Individual sources of CH, remain highly uncertain.

* In-situ observations - Improve our understanding of various CH,
sources, but the observation stations are sparsely distributed.

Observations from space have transformed the
condition from data-poor to data-rich over past 20
years.




Challenges

* Regional emissions of CH, remains highly uncertain particular
over Asian region, which is one of the most significant areas of
CH, emissions.

* Where is the source of CH, in Asia?

Satellite observations from space
have the potential to captured the
spatial and temporal variability in
CH4 for most part of glob landin




Model Descriptions

Atmospheric general circulation model (AGCM)-based CTM (i.e., JAMSTEC’s
ACTM).

Meteorological field Japan Meteorological Agency reanalysis fields (vr., JRA-55).

Anthropogenic EDGAR42FT2012 (2013)

Wetlands and rice paddies VISIT terrestrial ecosystem model

Biomass burning Goddard Institute for Space Studies (GISS) and Global and
Global Fire Emission Database (GFED) version 3.2

Resolutions ~2.8 x 2.8° horizontal and 67 vertical sigma-pressure levels

Atmospheric molar fractions of CH, have been simulated using an
ensemble of 3 cases of a priori emission scenarios .

AGS All emission sectors in EDGAR42FT kept constant at the
values for 2000, except for the emissions from agricultural
soils.

CTL EDGAR32/VISIT/GISS
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Methane should be part of climate policy
...but for reasons totally different than CO,

» |t addresses climate change on time scales of decades — which we care about
Loss of Arctic sea ice, seal level rise, rain during ski season

|t has air quality co-benefits
Methane is a major precursor of background tropospheric ozone

« Itis an alternative to geoengineering by aerosol injections
Both address near-term climate change — which do you prefer?

* Reducing methane emissions can be easy to do and make money
Fix leaks from oil/gas super-emitters, capture methane from landfills...

Climate policy should not use a single time horizon for metrics;
reporting both 20-year and 100-year GWPs would be a simple solution




2010 2013 Global GOSAT Retrievals

The GOSAT observational r7cord
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THE ART AND SCIENCE OF CLIMATE MODEL TUNING

(this has relevance to solving OH issues in CTMs)

We survey the rationale and diversity of
approaches for tuning, a fundamental
aspect of climate modeling, which should
be more systematically documented and
taken into account in multimodel analysis.

Example of tuning approach for the ECHAM model (after Mauritsen
et al. 2012). The figure illustrates the major uncertainty in climate-
related stratiform liquid and ice clouds and shallow and deep
convective clouds. The gray curve to the left represents tropospheric
temperatures, and the dashed line is the top of the boundary layer.
Parameters are (a) convective cloud mass flux above the level of
nonbuoyancy, (b) shallow convective cloud lateral entrainment rate,
(c) deep convective cloud lateral entrainment rate, (d) convective
cloud water conversion rate to rain, (e) liquid cloud homogeneity, (f)
liquid cloud water conversion rate to rain, (g) ice cloud homogeneity,
and (h) ice particle fall velocity.

Hourdin et al., BAMS, 2017
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The colored curves correspond to three configurations of the GFDL CM3
model. CM3 denotes the CMIP5 model, while CM3c and CM3w denote
alternate configurations with large and smaller, respectively, cooling from cloud
aerosol interactions.




Cllmate and Clean Air Coalition/CCAC)

Launch of the Climate and Clean Air

SLCP:
CH4

Tropospheric Ozone
Black Carbon

Temperature (C) relative to 1890-1910
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Coalition to Reduce Short Live

Climate Pollutants, Feb 17, 2012.
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What is GOSAT?
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