Development of Air Pollution Emission Inventory in Hanoi Metropolitan Region for Health Effect Assessment **Asian Institute of Technology**

Ngoc Vu, Nguyen Hong Phuc, N.T.Kim Oanh, Lai Nguyen Huy, Ekbordin Winijkul School of Environment, Resources and Development, EEM

INTRODUCTION

Hanoi faces serious air pollution problem with annual $PM_{2.5}$ in 2018 reaching 40.08 μ g/m³ (World Air Quality Report) that is alarming figures because of its strong association with health effects.

Major anthropogenic sources come from transportation, gasoline station, residential cooking, industries and biomass open burning.

METHODOLOGY

Statement: lack of Emission Inventory (EI) data prevents from in depth assessment of effects of air pollution under base case and emission reduction scenarios.

Objectives of this study are to update an existing EI for Hanoi Metropolitan Region (HMR) with emission from large point source and predict health benefits from $PM_{2.5}$ emission reduction under selected scenario using modeling.

PREVIOUS STUDIES

SO₂

1,3 Butadiene

Acetaldehydes

Formadehydes

Benzene

0.2

0.3

1.2

4.9

2.1

Emission Inventory	(EI) = Activity	/ Data ((AD) x Emi	ssion	Factors ((EF))
---------------------------	-----	--------------	----------	-----	---------	-------	-----------	------	---

Source EI calculation			Explanation				
On-road	$Em_{i,j} = Ni$	$v_j \times VKT_j \times EF_{i,j,f}$	i: Pollutant i; j: Vel	i: Pollutant i; j: Vehicle class j; f: fuel type f			
mobile			Em: Emission (g/y	Em: Emission (g/year)			
source			Nv: Number of veh	Nv: Number of vehicle in circulation (vehicle/year) ^a			
			VKT: Vehicle kilor	neter travelled (km	/vehicle/year) ^b		
			EF: Emission facto	EF: Emission factor (g/km) ^b			
Gasoline	VOCi	$= FC_i \times EF$	VOCi: VOC emiss	VOCi: VOC emission from station (i), gVOC/day			
station			FC _i : Gasoline sold	FC _i : Gasoline sold in station (i) (m ³ /day) ^c			
	ΣFC		EF: Emission facto	^d : Shrestha et al. (2013)			
	$FC_i =$	$=\frac{1}{\sum_{i=1}^{N} Station}$	FCi: Gasoline sold	FCi: Gasoline sold out in station i (m ³ /day.station)			
		21	N: Number of stati	Earth			
Residential	r	ı	i: type of fuel,			f: Nhung (2013), JICA	
cooking $Em_i = \sum FC_i \times P \times EF_i$		Em: Emission of fu	Em: Emission of fuel i burning (g/year)				
		=1	FC: Fuel consump	FC: Fuel consumption per capitaf (kg/person/year)f			
			P: Total population	P: Total population (urban and rural) ^g			
			EF: Emission facto	h: Shrestha et al. (2013)			
Industrial	ndustrial • Combustion sector ource $(100 - EC)$		i: pollutant i; j: fue	i: pollutant i; j: fuel type j; EC: Emission control ⁱ			
source			Em _i : Emission of pollutant i (g/year)			^j : Compile from internet	
$Em_i = FC_j \times EF_{i,j} \times \left(-\frac{100}{100} \right)$) FC _j : Fuel consump	FC _j : Fuel consumption type j (kg/year) ^j				
	Non-combustion sector		EF _{i,j} : Emission fact	$EF_{i,j}$: Emission factor of pollutant i for fuel type j (g/kg) ^k			
			EF _i : Emission facto	¹ : MOIT, compile from			
	$Em_i = Productivity \times EF_i$			Productivity (ton/year) ¹			
Biomass burning $Em_{i,j} = \sum M_i \times EF_{i,j}$		i, j = Pollutant i an	^m : Dong (2013)				
		Em _{i,j} = Emission of	ⁿ : Shrestha et al. (2013)				
2			M _j =Amount of bu	rned biomass from	crop type j(kg/yr) ^m		
		EF _{i,j} = Emission fa					
			(g/kg of dry matter	(g/kg of dry matter) ⁿ			
Param	ter	Motorcvcle ^a	Public buses ^b	Urban taxi ^b	Personal car ^b		
Travel	distance	•/				Annual	
		20.3	212	157.0	42.0		
(km/da	y/vehicle)					Emission	
CO		158.2	60.2	429.2	228.6	(Kt/Voar) of	
VOCs		51.5	15.1	73.8	40.4	$(\mathbf{X}_{i} / \mathbf{I} \in \mathcal{U}_{i}) O_{i}$	
NO		0.5	147.0	17	10.4	Various	
NOx		9.5	147.8	17	18.6	Vahialas	
PM_{10}		2.4	18.2	0.2	0.3	v enicies	

Vietnam Domain (12 x 12 km)

Nesting configuration of meteorology domains (WRF) and air quality domain (CAMx)

1.5

0.2

0.5

1.2

6.3

1.0

0.02

0.1

0.34

0.16

Under Base

in Hanoi,

Case in 2010

Phuc (2018).

1.9

0.04

0.04

0.1

3.75

EXPECTED **REFINED RESULTS**

Distribution of PM_{25} in August (rainy season) and in December (dry season)

This study will develop comprehensive EI in HMR, especially complete EI data set of large point sources emission in vicinity of Hanoi.

Previous study treat large point sources modeled PM_{25} sources, area as overestimated in some industrial zones This study will refine dispersion modeling results and treat large point sources separately,

The health effect results will be also elaborated based on the refined PM_{25}

105°45'0"E 106°12'0"E 105°18'0"E Spatially distributed long-term avoided mortality by all-causes resulted from elimination of 50% MC fleet in Hanoi in 2010 per refined grid cell 0.5x0.5 km

HAI DUONG

THAI BINH

HA NAM