# Overview of winter air quality in Pokhara Valley, Nepal during airborne measurements

Pravash Tiwari<sup>1</sup>, Ashish Singh<sup>2</sup>, Erika von Schneidemesser<sup>1</sup>, Wolfgang Junkermann<sup>3</sup>, Maheswar Rupakheti<sup>1</sup>, M.G. Lawrence<sup>1</sup>

<sup>1</sup>Institute for Advanced Sustainability Studies, Potsdam, Germany

<sup>2</sup>Department of Soil, water and climate, University of Minnesota, Twin Cities, MN, U.S.A

<sup>3</sup>Institute of Meteorology and Climate Research, Garmisch-Partenkirchen, Germany

### **Background and Motivation**

Pokhara Valley(PV), is the second largest metropolitan city of Nepal situated in the foothill of Himalayas. No previous study has been carried out studying the potential source areas (PSAs) contributing to PM pollution over the Valley using **Potential Source Contribution** Function (PSCF) and Concentration-Weighted Trajectory (CWT) approach.

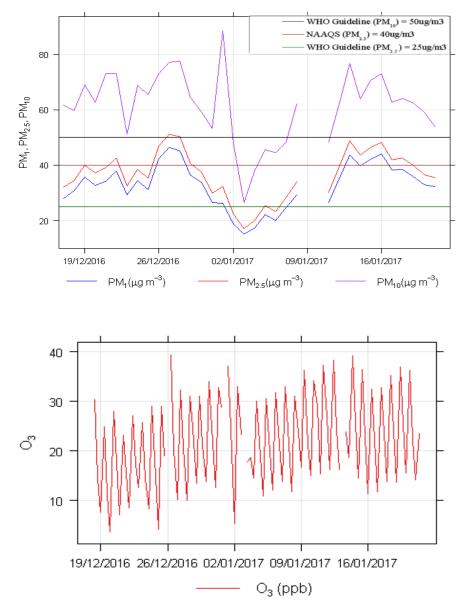


## Study Goals

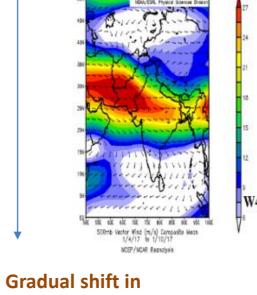
The study was conducted over the Valley with an aim to understand the air pollution scenario during winter and to provide support to the airborne campaign. The study also intends to identify PSAs contributing to PM<sub>2.5</sub> pollution over the Valley.

### DATA AND ANALYSIS





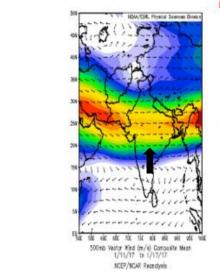


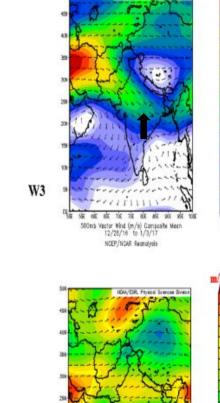


#### **Ground Measurements/Data Sources:**

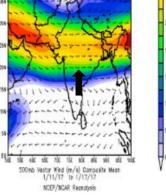
| Parameters                                                                               | Instrument                                                                                                                                   |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Size distribution (0.3-20µm)                                                             | GRIMM 1.108                                                                                                                                  |
| Ozone monitoring                                                                         | Model 205 dual beam Ozone monitor (2B technologies)                                                                                          |
| Black Carbon Concentration                                                               | Micro Aeth (AE51)                                                                                                                            |
| SMPS, Nano particle sizer  • Size distribution (>14nm)  • Size distribution (0.3 - 10µm) | <ul><li>TSI SPMPS 3910</li><li>OPS Model 3330</li></ul>                                                                                      |
| Meteorological Parameters                                                                | Boundary Layer Height (ERA interim )     Wind speed/ Wind direction (Campbell Scientific AWS)     Temperature/ Humidity (weatherunderground) |

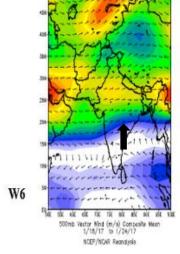
# RESULTS




- 1. Time series of PM and O<sub>3</sub>
- 3. Polar plot PM and O<sub>3</sub> 2. Diurnal Variation of PM and O<sub>3</sub> 5. PSCF distribution during Dec/Jan 2016 January -2017





500mb wind from


westerly to south

westerly









4. 500mb wind vector

### CONCLUSIONS

- The air quality over Pokhara is poor, exceeding the WHO guidelines throughout the sampling period.
- Temporal variation of fine particulate matter indicates local emission with low winds influencing  $PM_{25}$  and  $PM_{1}$ .
- Variation in PM<sub>10</sub> was, regional transport of coarse particles.
- PSCF and CWT analysis indicates transboundary (across India-Nepal border) local sources regions contributing to PM<sub>2.5</sub> deposition in PV.

### Acknowledgments

This study is conducted in collaboration with the Ministry of Forests and Environment, Nepal as a contribution to Project SusKat led by IASS. This work was hosted by IASS Potsdam, with financial support provided by the Federal Ministry of Education and Research of Germany (BMBF) and the Ministry for Science, Research, and Culture of the State of Brandenburg (MWFK).

### The IASS is sponsored by





