4th Atmospheric Composition and the Asian Monsoon (ACAM) Workshop

A warm welcome on behalf of the SSG and WG leaders

Hans Schlager, Mian Chin

Laura Pan, Jim Crawford, Hiroshi Tanimoto, Michelle Santee, Jianchun Bian, Klaus Gottschaldt, Gabi Stiller, Chang-Keun Song, Jonathon Wright, Xiaohua Pan, Bhupesh Adhikary, Federico Fierli, Ritesh Gautam , Fatimah Ahamad, Mohd Talib Latif

Universiti Kebangsan Malaysia, 26-28 June 2019

Asian Monsoon research area is very active and continues to expand

ACAM Science is multidisciplinary

Emissions ↔ Monsoon ↔ UTLS Composition ↔ Climate

Workshop is structured according the four ACAM Science themes:

- Emissions and air quality in the Asian monsoon region
- Aerosols, clouds, and their interactions with the Asian monsoon
- Impact of monsoon convection on chemistry
- UTLS Response to the Asian Monsoon

Chemical signature from satellite obs

Features:

- ASMA is one of the largest meteorological features on Earth
- Distinct air mass isolated by closed circulation in the UTLS
- Input of BL air by frequent deep convection
- Located over very polluted region
- ASM causes large-scale dispersion of pollution
- Important gateway for air to enter the stratosphere
- Region of a persistent aerosol layer (ATAL)
- Highest and coldest TP in JJA

(Park et al. 2007)

CALIOP Backscatter at 532 nm on 17 Aug. 2017, 20 UTC

(Lee et al., 2019)

- ASMA is one of the largest meteorological features on Earth
- Distinct air mass isolated by closed circulation in the UTLS
- Input of BL air by frequent deep convection
- Located over very polluted region
- ASM causes large-scale dispersion of pollution
- Important gateway for air to enter the stratosphere
- Region of a persistent aerosol layer (ATAL)
- Highest and coldest TP in JJA

Features:

- ASMA is one of the largest meteorological features on Earth
- Distinct air mass isolated by closed circulation in the UTLS
- Input of BL air by frequent deep convection
- Located over very polluted region
- ASM causes large-scale dispersion of pollution
- Important gateway for air to enter the stratosphere
- Region of a persistent aerosol layer (ATAL)
- Highest and coldest TP in JJA

(MACCity, 2015)

- ASMA is one of the largest meteorological features on Earth
- Distinct air mass isolated by closed circulation in the UTLS
- Input of BL air by frequent deep convection
- Located over very polluted region
- ASM causes large-scale dispersion of pollution
- Important gateway for air to enter the stratosphere
- Region of a persistent aerosol layer (ATAL)
- Highest and coldest TP in JJA

(Garney & Randel, 2016)

Satellite (MLS) oberservation of H_2O in the lower stratosphere

(Randel & Jensen 2013)

- ASMA is one of the largest meteorological features on Earth
- Distinct air mass isolated by closed circulation in the UTLS
- Input of BL air by frequent deep convection
- Located over very polluted region
- ASM causes large-scale dispersion of pollution
- Important gateway for air to enter the stratosphere
- Region of a persistent aerosol layer (ATAL)
- Highest and coldest TP in JJA

(Vernier et al. 2011)

- ASMA is one of the largest meteorological features on Earth
- Distinct air mass isolated by closed circulation in the UTLS
- Input of BL air by frequent deep convection
- Located over very polluted region
- ASM causes large-scale dispersion of pollution
- Important gateway for air to enter the stratosphere
- Region of a persistent aerosol layer (ATAL)
- Highest and coldest TP in JJA

(Munchak & PAN, 2013, Pan et al. 2016)

- ASMA is one of the largest meteorological features on Earth
- Distinct air mass isolated by closed circulation in the UTLS
- Input of BL air by frequent deep convection
- Located over very polluted region
- ASM causes large-scale dispersion of pollution
- Important gateway for air to enter the stratosphere
- Region of a persistent aerosol layer (ATAL)
- Highest and coldest TP in JJA

Horizontal transport pathways from the ASMA

(Vogel et al. 2016)

- Which source regions contribute to the air in the ASMA?
- How sharp is the chemical egde of the ASMA?
- Is there enhanced photochemistry in the ASMA?
- Which are the key transport pathways from the ASMA
- What is the composition of air exported from the ASMA
- Role of reactive nitrogen in the ASMA and importance of LNOx
- What is the nature of the ATAL aerosol and precursor gases ?
- What are the properties of ice clouds; can we observe uptake of HNO₃?

Eddy shedding event to the western Pacific region (MLS CO)

(Laura Pan, ACCLIP)

- Which source regions contribute to the air in the ASMA?
- How sharp is the chemical egde of the ASMA?
- Is there enhanced photochemistry in the ASMA?
- Which are the key transport pathways from the ASMA
- What is the composition of air exported from the ASMA
- Role of reactive nitrogen in the ASMA and importance of LNOx
- What is the nature of the ATAL aerosol and precursor gases ?
- What are the properties of ice clouds; can we observe uptake of HNO₃?

World Wide Lightning Location Network Data (during Stratoclim campaign)

- Which source regions contribute to the air in the ASMA?
- How sharp is the chemical egde of the ASMA?
- Is there enhanced photochemistry in the ASMA?
- Which are the key transport pathways from the ASMA
- What is the composition of air exported from the ASMA
- Role of reactive nitrogen in the ASMA and importance of LNOx
- What is the nature of the ATAL aerosol and precursor gases ?
- What are the properties of ice clouds; can we observe uptake of HNO₃?

Jun/Jul/Aug 2010 15.0 km

Jun/Jul/Aug 2010 12.0 km

- Which source regions contribute to the air in the ASMA?
- How sharp is the chemical egde of the ASMA?
- Is there enhanced photochemistry in the ASMA?
- What is the composition of air exported from the ASMA
- Role of reactive nitrogen in the ASMA and importance of LNOx
- What is the nature of the ATAL aerosol and precursor gases ?
- What are the properties of ice clouds; can we observe uptake of HNO₃?

(Höpfner et al. 2016)

Calipso cloud fraction in 16 Km

- Which source regions contribute to the air in the ASMA?
- How sharp is the chemical egde of the ASMA?
- Is there enhanced photochemistry in the ASMA?
- What is the composition of air exported from the ASMA
- Role of reactive nitrogen in the ASMA and importance of LNOx
- What is the nature of the ATAL aerosol and precursor gases ?
- What are the properties of ice clouds; can we observe uptake of HNO₃?

Balloon campaigns (BATAL, India; SWOP, China; StratoClim, India, Bangladesh, Palau)

Balloon Launch in Hyderabad (Vernier et al. 2017)

Balloon launch during StratoClim

Aerosol backscatter at 455 nm

(Brunamonti et al., 2018)

Recent Aircraft Measurements in the ASMA

- OMO: sampling across the boundary of the ASMA
- StratoClim: sampling of the vertical structure and fresh convective outflow in the ASMA

Aircraft instrumentation

 O_3 , NO, NOy, CO, CH₄,

Aitken aerosol (CN)

OH, HO₂, RO₂, VOC, OVOC

OMO

 H_2O

 SO_2

in-situ	
Chemi	stry/tracer:

Water : Sulfur species: Aerosol:

Clouds:

Remote sensing

Trace gases: Clouds: O₃, NO₂, VSLS (DOAS)

StratoClim

 O_3 , NO, HNO₃, NO_y, CO, VSLS, CH₄, N₂O, SF₆, CFC11/12 H₂O, HDO, total H₂O OCS, SO₂, H₂SO₄ total/non-volatile CN, size distribution, chemical composition size distribution, particle shape particle-NOy

O₃, H₂O, HNO₃, PAN, NH₃ (Gloria) optical properties (micro lidars)

OMO flight across boundary of ASMA

CO / ppb

OMO flight across boundary of ASMA

Vertical coverage of Geophysica flights

⁽courtesy of Markus Rex)

NO and SO₂ profiles from StratoClim and OMO

(Stratmann, Schlager et al., in prep. 2019)

EMAC: Relative contributions of sources to NOy

(Stratmann, Schlager et al., DLR, in prep. 2019)

EMAC: Relative contributions of source regions to SO₂

(Schlager et al., in prep. 2019)

ASM Contribution to Stratospheric aerosol surface area

(Yu et al., 2017, PNAS)

ACAM Working Groups

ACAM activities are coordinated through working groups

WG1: Observations and Data Sharing

Leads: Jianchun Bian, Gabriele Stiller, Klaus-Dirk Gottschaldt, Chang-Keun Song Focus: Identify ACAM-relevant datasets, organize data sharing, encourage future campaings and coordinated observations

WG2: Modeling and Analysis

Leads: Jonathon Wright, Xiaohua Pan

Focus: Foster interactions with global and regional modeling communities, and to organize ACAM-related modeling and analysis

WG3: Training School

Leads: Federico Fierli, Ritesh Gautam, and Bhupesh Adhikaryi **Focus:** Develop training opportunities for early career scientists on observations and modeling

Word Cloud generated from ACAM 2019 Abstract Titles

Thank you for being here and enjoy the workshop!