Characterization of Air Quality in Bangkok Metropolitan Region, Thailand

P. Uttamang, P. Campbell, A. Hanna, and V.P. Aneja

ACAM 2019

NC STATE UNIVERSITY

Study Area: Bangkok Metropolitan Region (BMR)

The BMR: In the central region. Consists with 6 provinces. 1.5% of the total area of Thailand.

Bangkok Metropolitan Region (BMR)

High population density: ~5,300 people km⁻² (~16% of the total population in Thailand (~11 Mill)) High vehicle density: ~10 million new registered vehicles in 2014.

In the past 10 years: number of new vehicles in the BMR has been increasing continuously.

Air Quality Issues in the BMR

The New York Times

BANGKOK DISPATCH Bangkok Is Choking on Air Pollution. The Response? Water Cannons.

4 weeks free, then \$1 a week. The Finals Sale ends soon

SEE MY OPTIONS

The BMR has experienced in air quality degradation since 1995, especially high O₃ and fine PM concentrations

Il of especially soupy air has Bangkok and protect residents against dire health impacts

Air pollution is choking Bangkok,

but a solution is in reach

National Ambient Air Quality Standard of Thailand for - hourly $O_3 = 100 \text{ ppb}$

- daily PM2.5 = 0.05 mg m^{-3}

How to study air quality?

Combine observational-analysis with model-based analysis.

Investigate processes elevating gaseous criteria pollutants levels in the BMR.

- Hourly meteorological parameters and gaseous concentrations.

- During 2010-2014 (5 years).

- Provided by Pollution Control Department, Thailand.

- 15 monitoring stations.

Result: ambient air quality trends

Species: CO, NO₂, SO₂, O₃.

- Hourly concentrations of CO, NO_x, SO₂ were below the Thailand NAAQS.
- Exceedances in hourly O₃ NAAQS (>100 ppb).

- O₃ exceedance events occurred every year.
- Suburb sites > ambient sites > road sites
- O₃ exceedance events mostly occurred in dry season.

Method: Linear regression.

Impact of local and regional contributions of O_x (O_3 +N O_2) on O_3 levels.

Sites	Non O ₃ episodes	O ₃ episodes	Contributions	Non O ₃ episodes	O ₃ episodes
BKK site	Y = 0.33 + 44.4	Y = 0.48x + 91.1	Local (slope m)	~0.26	~0.48
Roadside	Y = 0.13x + 53.9	Y = 0.29x + 104.5	Local (Slope, III)	0.20	0.40
Suburb	Y = 0.31x + 47.0	Y = 0.68x + 82.9	Regional	~48 ppb	~95 ppb

(Uttamang et al., 2018)

Effect of Long-range Transport Elevating O_3 in the BMR

Model: WRF-Chem v 3.9.1

Domain: A triple-nested domain (36-, 24-, 4-km res.).

Meteorology: NCEP-FNL 1°× 1° res. Biogenic emission: Online MEGAN Initial/Boundary conditions: MOZART Anthropogenic emission: EDGAR-HTAP 0.1°× 0.1° res. Spin-up time: Dec 18 to 31, 2009 Study period: Jan 1 to March 31, 2010 Re-initialize met: every 10 days

Physics and chemistry options

Physics	
Microphysics	Thompson
LW radiation	RRTMG
SW radiation	RRTMG
PBL	Yonsei University
Cumulus physics	Grell-Freitas (only d01 and d02)
Chemistry	
Chemical mechanism	RADM2-MADE/SORGAM

Model-based analysis: Model Evaluation

- O₃ episode: March 5 to 6, 2010.
- [O₃]_{hourly} > 100 ppb were observed from 9 monitoring stations in the BMR.

 O_3 from Obs vs Sim, March 1 to 6, 2010, at the 9 monitoring stations.

the model predicts O₃ concentrations reasonably and performs well in capturing the O₃ event

Effect of Long-range Transport of Pollutants Originating from China

Predominant wind direction: Northeast monsoon winds. ensitivity – baseline)

EDGAR-HTAP

Simulations	Adjusted China's emissions		Noto	
Simulations	NO _x	VOC	Note	
Baseline	No	No		
Sensitivity				
- Strategy 1 (S1)	10% reduction	No	The national reduction target during China's 12 th FYP (Wang et al., 2014a)	
- Strategy 2 (S2)	20% reduction	No	Noto examine the responses of O3 and its precursors in the BMF due to different China's NOx emission reductions.No	
- Strategy 3 (S3)	40% reduction	No		
- Strategy 4 (S4)	40% reduction	40% reduction	Optional China's NO_x and VOC emissions reductions proposed by Wang and Hao, 2012. to investigate implications for including VOC emission reduction strategies in China.	

Spatial distribution of delta O₃ based on emission reduction in China

(delta of $O_3 = O_3$ sensitivity simulations – O_3 baseline simulation)

outermost domain

 Slightly increase the monthly-average O₃ (~1% to ~5%) due to NO_x reductions.

- Eastern China to southeast Asia in NE/SW directions.

Mitigated by incorporating40% VOC reduction.

Spatial Distribution of Delta O₃

increase in the monthly-average O_3 (~ 1 to 6%) due to NO_x reductions.

Indicators analysis: indicates VOC-, NO_x-limited regions

H₂O₂/HNO₃, O₃/NO_x, O₃/NO_y, O₃/NO_z, HCHO/NO₂ and HCHO/NO_y

The spatial distributions of H₂O₂/HNO₃

Summary

Regional scale

- China's emissions play an important role in controlling the pollutant levels in this region.
- The changes in regional NO_{x} correspond directly to the changes in China's NO_{x} emissions.
- East China to Southeast Asia are VOC-limited.
- Controlling only NO_x emissions is not an effective strategy but the decreases in VOC emissions will provide more benefit to control O₃ concentrations.

In the BMR

- Long-range transport as far as originating from China influences the O_3 levels.
- More likely to be VOC-limited, however biogenic VOC (BVOC) emissions will favor O₃ formation.

Acknowledgements

We thank:

- Stratosphere-troposphere Processes And their Role in Climate and 4th Atmospheric Composition and Asian Monsoon Workshop (ACAM 2019) for providing travel support.
- the Royal Thai Government for providing a fellowship
- Air Quality and Noise Management Bureau, Pollution Control Department, Ministry of Natural Resources and Environment, Bangkok, Thailand, for providing QA/QC air pollution and meteorology data.
- NCAR-UCAR CISL for Cheyenne, high-performance computer.
- Dr. Gary Lackmann, the department of Marine Earth and Atmospheric sciences, North Carolina State university for the model assistance.
- MEAS Air Quality Research Group.
- Dr. Chinmay Kumar Jena, Indian Institute of Tropical Meteorology for the model assistance.